Computational Problems and Dedicated Software

  • Joseph Krasil’shchik
  • Alexander Verbovetsky
  • Raffaele Vitolo
Chapter
Part of the Texts & Monographs in Symbolic Computation book series (TEXTSMONOGR)

Abstract

In this chapter, we give an overview of the basic computational problems that arise in the study of geometrical aspects related to nonlinear partial differential equations and in the study of their integrability in particular.

We also discuss the historical development and the latest features of the Reduce software that we will use to solve the above computational problems: CDIFF, developed around 1990 by our colleagues P.K.H. Gragert, P.H.M. Kersten, G.F. Post, and G.H.M. Roelofs of the University of Twente and the CDE package, developed by one of us (RV).

Finally, we review other publicly available software that is currently used in similar computational tasks.

References

  1. 2.
    Anderson, I.: Integrable Systems Tools, Maple package available at http://digitalcommons.usu.edu/dg/ (2017)
  2. 6.
    Baldwin, D., Hereman, W.: A symbolic algorithm for computing recursion operators of nonlinear partial differential equations. Int. J. Comput. Math. 87(5), 1094–1119 (2010)Google Scholar
  3. 7.
    Barakat, A., De Sole, A., Kac, V.G.: Poisson vertex algebras in the theory of Hamiltonian equations. Jpn. J. Math. 4, 141–252 (2009)Google Scholar
  4. 8.
    Barakat, M.: Jets. A Maple-package for formal differential geometry. In: Computer Algebra in Scientific Computing, pp. 1–12. Springer, Berlin/Heidelberg (2001)Google Scholar
  5. 9.
    Baran, H., Krasilshchik, I.S., Morozov, O.I., Vojčák, P.: Higher symmetries of cotangent coverings for Lax-integrable multi-dimensional partial differential equations and lagrangian deformations. In: Konopelchenko, B.G., et al. (eds.) Physics and Mathematics of Nonlinear Phenomena 2013. Journal of Physics: Conference Series, vol. 482, p. 012002 (2014). arXiv:1309.7435Google Scholar
  6. 14.
    Baran, H., Krasilshchik, I.S., Morozov, O.I., Vojčák, P.: Nonlocal symmetries of Lax integrable equations: a comparative study. Submitted to Theor. Math. Phys. (2016). arXiv:1611.04938Google Scholar
  7. 15.
    Baran, H., Marvan, M.: Jets. A software for differential calculus on jet spaces and diffieties. Silesian University in Opava. First version 2003; revised version 2010. Available at: http://jets.math.slu.cz/
  8. 16.
    Baran, H., Marvan, M.: On integrability of Weingarten surfaces: a forgotten class. J. Phys. A 42, 404007 (2009)Google Scholar
  9. 18.
    Bocharov, A.V., Chetverikov, V.N., Duzhin, S.V., Khorkova, N.G., Krasilshchik, I.S., Samokhin, A.V., Torkhov, Y.N., Verbovetsky, A.M., Vinogradov, A.M.: In: Krasilshchik, I.S., Vinogradov, A.M. (eds.) Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. Monograph. American Mathematical Society, Providence (1999)Google Scholar
  10. 21.
    Casati, M.: Higher order dispersive deformations of multidimensional Poisson brackets of hydrodynamic type. (2017). arXiv:1710.08175Google Scholar
  11. 22.
    Casati, M., Valeri, D.: MasterPVA and WAlg: mathematica packages for poisson vertex algebras and classical affine \(\mathbb {W}\)-algebras. https://arxiv.org/abs/1603.05028 (submitted, 2016)
  12. 23.
    Coley, A., Levi, D., Milson, R., Rogers, C., Winternitz, P. (eds.): Bäcklund and Darboux Transformations. The Geometry of Solitons. CRM Proceedings and Lecture Notes, vol. 29. American Mathematical Society, Providence (2001)Google Scholar
  13. 33.
    Ferapontov, E.V., Pavlov, M.V., Vitolo, R.F.: Projective-geometric aspects of homogeneous third-order hamiltonian operators. J. Geom. Phys. 85, 16–28 (2014). https://doi.org/10.1016/j.geomphys.2014.05.027
  14. 40.
    Getzler, E.: A Darboux theorem for Hamiltonian operators in the formal calculus of variations. Duke Math. J. 111, 535–560 (2002)Google Scholar
  15. 43.
    Golovko, V.A., Kersten, P.H.M., Krasilshchik, I.S., Verbovetsky, A.M.: On integrability of the Camassa-Holm equation and its invariants. Acta Appl. Math. 101, 59–83 (2008)Google Scholar
  16. 49.
    Igonin, S.: Coverings and fundamental algebras for partial differential equations. J. Geom. Phys. 56, 939–998 (2006)Google Scholar
  17. 50.
    Igonin, S., Krasilshchik, J.: On one-parametric families of Bäcklund transformations. In: Morimoto, T., Sato, H., Yamaguchi, K. (eds.) Lie Groups, Geometric Structures and Differential Equations—One Hundred Years After Sophus Lie. Advanced Studies in Pure Mathematics, vol. 37, pp. 99–114. Mathematical Society of Japan, Tokyo (2002)Google Scholar
  18. 51.
    Igonin, S., Verbovetsky, A., Vitolo, R.: Variational multivectors and brackets in the geometry of jet spaces. In: Symmetry in Nonlinear Mathematical Physics. Part 3, pp. 1335–1342. Institute of Mathematics of NAS of Ukraine, Kiev (2003)Google Scholar
  19. 54.
    Kersten, P.: Supersymmetries and recursion operator for N = 2 supersymmetric KdV-equation. Sūrikaisekikenkyūsho Kōkyūroku 1150, 153–161 (2000)Google Scholar
  20. 55.
    Kersten, P., Krasilshchik, I., Verbovetsky, A.: An extensive study of the N = 1 supersymmetric KdV equation. Memorandum 1656, Faculty of Mathematical Sciences, University of Twente, The Netherlands (2002)Google Scholar
  21. 57.
    Kersten, P., Krasilshchik, I., Verbovetsky, A.: Hamiltonian operators and -coverings. J. Geom. Phys. 50, 273–302 (2004)Google Scholar
  22. 59.
    Kersten, P., Krasilshchik, I., Verbovetsky, A.: (Non)local Hamiltonian and symplectic structures, recursions and hierarchies: a new approach and applications to the N = 1 supersymmetric KdV equation. J. Phys. A 37, 5003–5019 (2004)MathSciNetCrossRefMATHGoogle Scholar
  23. 61.
    Kersten, P., Krasilshchik, I., Verbovetsky, A.: A geometric study of the dispersionless Boussinesq type equation. Acta Appl. Math. 90, 143–178 (2006)Google Scholar
  24. 62.
    Kersten, P., Krasilshchik, I., Verbovetsky, A., Vitolo, R.: On integrable structures for a generalized Monge–Ampère equation. Theor. Math. Phys. 128(2), 600–615 (2012)Google Scholar
  25. 63.
    Kersten, P., Krasilshchik, J.: Complete integrability of the coupled KdV-mKdV system. In: Morimoto, T., Sato, H., Yamaguchi, K. (eds.) Lie Groups, Geometric Structures and Differential Equations—One Hundred Years After Sophus Lie. Advanced Studies in Pure Mathematics, vol. 37, pp. 151–171. Mathematical Society of Japan, Tokyo (2002)Google Scholar
  26. 66.
    Khorkova, N.G.: Conservation laws and nonlocal symmetries. Math. Notes 44, 562–568 (1989)Google Scholar
  27. 70.
    Krasilshchik, I.S.: Algebras with flat connections and symmetries of differential equations. In: Komrakov, B.P., Krasilshchik, I.S., Litvinov, G.L., Sossinsky, A.B. (eds.) Lie Groups and Lie Algebras: Their Representations, Generalizations and Applications, pp. 407–424. Kluwer, Dordrecht/Boston (1998)Google Scholar
  28. 71.
    Krasilshchik, I.S., Kersten, P.H.M.: Deformations and recursion operators for evolution equations. In: Prastaro, A., Rassias, T.M. (eds.) Geometry in Partial Differential Equations, pp. 114–154. World Scientific, Singapore (1994)Google Scholar
  29. 72.
    Krasilshchik, I.S., Kersten, P.H.M.: Graded differential equations and their deformations: a computational theory for recursion operators. Acta Appl. Math. 41, 167–191 (1994)Google Scholar
  30. 74.
    Krasilshchik, I.S., Kersten, P.H.M.: Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations. Kluwer, Dordrecht/Boston (2000)Google Scholar
  31. 75.
    Krasilshchik, I.S., Lychagin, V.V., Vinogradov, A.M.: Geometry of Jet Spaces and Nonlinear Partial Differential Equations. Gordon and Breach, New York (1986)Google Scholar
  32. 78.
    Krasilshchik, I.S., Vinogradov, A.M.: Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations. Acta Appl. Math. 15, 161–209 (1989)Google Scholar
  33. 79.
    Krasilshchik, J., Verbovetsky, A., Vitolo, R.: A unified approach to computation of integrable structures. Acta Appl. Math. 120(1), 199–218 (2012)Google Scholar
  34. 80.
    Krasilshchik, J., Verbovetsky, A., Vitolo, R.: The Symbolic Computation of Integrability Structures for Partial Differential Equations. Texts and Monographs in Symbolic Computation. Springer (2018). ISBN:978-3-319-71654-1; to appear; see http://gdeq.org/Symbolic_Book for downloading program files that are discussed in the book
  35. 81.
    Krasilshchik, J., Verbovetsky, A.M.: Homological Methods in Equations of Mathematical Physics. Advanced Texts in Mathematics. Open Education & Sciences, Opava (1998)Google Scholar
  36. 82.
    Krasilshchik, J., Verbovetsky, A.M.: Geometry of jet spaces and integrable systems. J. Geom. Phys. 61, 1633–1674 (2011). arXiv:1002.0077Google Scholar
  37. 86.
    Lorenzoni, P., Savoldi, A., Vitolo, R.: Bi-Hamiltonian systems of KdV type. J. Phys. A : Math. Theor. 51(4) (2018), 045202. http://arxiv.org/abs/1607.07020 CrossRefMATHGoogle Scholar
  38. 88.
    Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19, 1156–1162 (1978)MathSciNetCrossRefMATHGoogle Scholar
  39. 97.
    Marvan, M.: Sufficient set of integrability conditions of an orthonomic system. Found. Comput. Math. 9, 651–674 (2009)MathSciNetCrossRefMATHGoogle Scholar
  40. 101.
    Meshkov, A.G.: Tools for symmetry analysis of PDEs. Differ. Equ. Control Proc. 1 (2002). http://www.math.spbu.ru/diffjournal/
  41. 106.
    Norman, A.C., Vitolo, R.: Inside Reduce. Part of the official Reduce documentation, included in the source code of Reduce. See also http://reduce-algebra.sourceforge.net/lisp-docs/insidereduce.pdf (2014)
  42. 108.
    Nucci, M.C.: Interactive reduce programs for calculating classical, non-classical, and approximate symmetries of differential equations. In: Computational and Applied Mathematics II. Differential Equations, pp. 345–350. Elsevier, Amsterdam (1992)Google Scholar
  43. 110.
    Oliveri, F.: ReLie, Reduce software and user guide. Technical report, Università degli Studi di Messina (2015). http://mat521.unime.it/oliveri/
  44. 114.
    Pavlov, M.V., Vitolo, R.F.: On the bi-Hamiltonian geometry of the WDVV equations. Lett. Math. Phys. 105(8), 1135–1163 (2015)MathSciNetCrossRefMATHGoogle Scholar
  45. 120.
    Post, G.F.: A manual for the package tools 2.1. Technical Report Memorandum 1331, Department of Applied Mathematics, University of Twente (1996). http://gdeq.org/CDIFF
  46. 124.
    Roelofs, G.H.M.: The INTEGRATOR package for Reduce. Technical Report Memorandum 1100, Department of Applied Mathematics, University of Twente (1992). http://gdeq.org/CDIFF
  47. 125.
    Roelofs G.H.M.: The SUPER_VECTORFIELD package for Reduce. Technical Report Memorandum 1099, Department of Applied Mathematics, University of Twente (1992). http://gdeq.org/CDIFF
  48. 126.
    Rogers, C., Schief, W.K.: Bäcklund and Darboux Transformations. Cambridge University Press, Cambridge/New York (2002)CrossRefMATHGoogle Scholar
  49. 127.
    Saccomandi, G., Vitolo, R.: On the mathematical and geometrical structure of the determining equations for shear waves in nonlinear isotropic incompressible elastodynamics. J. Math. Phys. 55, 081502 (2014). arXiv:1408.6177Google Scholar
  50. 128.
    Schwartz, F.: The package SPDE for determining symmetries of partial differential equations. http://reduce-algebra.sourceforge.net/manual/contributed/spde.pdf (1985)
  51. 134.
    Sergyeyev, A., Vitolo, R.: Symmetries and conservation laws for the Karczewska–Rozmej–Rutkowski–Infeld equation. Nonlinear Analysis: Real World Applications. 32, 1–9 (2016)MathSciNetCrossRefMATHGoogle Scholar
  52. 138.
    Vinogradov, A.M.: The \(\mathbb {C}\)-spectral sequence, Lagrangian formalism, and conservation laws. I. The linear theory. II. The nonlinear theory. J. Math. Anal. Appl. 100, 1–129 (1984)Google Scholar
  53. 141.
    Vitolo, R.: CDIFF: a reduce package for computations in geometry of differential equations. User manual available at http://gdeq.org/CDIFF (2011)
  54. 142.
    Vitolo, R.: CDE: a reduce package for integrability of PDEs. Included in Reduce. Example programs are available in the /packages/cde/examples of Reduce installation or at the web page http://gdeq.org/CDE (2014)
  55. 147.
    Wolf, T.: An efficiency improved program LIEPDE for determining Lie-symmetries of PDEs. In: Proceedings of Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics. Kluwer (1993)Google Scholar
  56. 148.
    Wolf, T.: A comparison of four approaches to the calculation of conservation laws. Eur. J. Appl. Math. 13(2), 129–152 (2002)MathSciNetCrossRefMATHGoogle Scholar
  57. 149.
    Wolf, T., Brand, A.: CRACK, user guide, examples and documentation. http://lie.math.brocku.ca/Crack_demo.html
  58. 150.
    Wolf, T., Brand, A.: Investigating des with crack and related programs. SIGSAM Bull. Spec. Issue 1–8 (1995)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Joseph Krasil’shchik
    • 1
  • Alexander Verbovetsky
    • 2
  • Raffaele Vitolo
    • 3
  1. 1.V.A. Trapeznikov Institute of Control Sciences RASIndependent University of MoscowMoscowRussia
  2. 2.Independent University of MoscowMoscowRussia
  3. 3.Department of Mathematics and Physics ‘E. De Giorgi’University of SalentoLecceItaly

Personalised recommendations