Skip to main content

Scalable Gaussian Process Models for Solar Power Forecasting

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10691))

Abstract

Distributed residential solar power forecasting is motivated by multiple applications including local grid and storage management. Forecasting challenges in this area include data nonstationarity, incomplete site information, and noisy or sparse site history. Gaussian process models provide a flexible, nonparametric approach that allows probabilistic forecasting. We develop fully scalable multi-site forecast models using recent advances in approximate Gaussian process methods to (probabilistically) forecast power at 37 residential sites in Adelaide (South Australia) using only historical power data. Our approach captures diurnal cycles in an integrated model without requiring prior data detrending. Further, multi-site methods show some advantage over single-site methods in variable weather conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Stationarity here refers to the property that distribution parameters remain stable (and finite) over time.

  2. 2.

    A fixed radius is applied to provide local regularisation, which has been found to reduce overfitting in multisite settings [11, 27]. The 10 km threshold aims to limit ‘neighbours’ to sites most likely to be relevant given historic local windspeed.

  3. 3.

    A useful exposition of coregional models can be found at [1].

  4. 4.

    The persistence model in the present study is applied to unflattened data.

  5. 5.

    Note that SMLL does not apply to the non-probabilistic persistence model.

  6. 6.

    Clear days are defined as those where daily global horizontal irradiance (GHI) was more than 90% of mean maximum daily GHI for the month of January. Measurements are from the Adelaide (West Terrace) Australian Bureau of Meteorology weather station. GHI for clear (cloudy) days ranges from 93–97 (36–90)% of the mean January maximum.

References

  1. Alvarez, M.A., Rosasco, L., Lawrence, N.D., et al.: Kernels for vector-valued functions: a review. Found. Trends® Mach. Learn. 4(3), 195–266 (2012)

    Article  MATH  Google Scholar 

  2. Aryaputera, A.W., Yang, D., Zhao, L., Walsh, W.M.: Very short-term irradiance forecasting at unobserved locations using spatio-temporal kriging. Sol. Energy 122, 1266–1278 (2015). http://www.sciencedirect.com/science/article/pii/S0038092X15005745

    Article  Google Scholar 

  3. Bessa, R., Trindade, A., Silva, C.S., Miranda, V.: Probabilistic solar power forecasting in smart grids using distributed information. Int. J. Electr. Power Energy Syst. 72, 16–23 (2015). http://www.sciencedirect.com/science/article/pii/S0142061515000897, the Special Issue for 18th Power Systems Computation Conference

    Article  Google Scholar 

  4. Bilionis, I., Constantinescu, E.M., Anitescu, M.: Data-driven model for solar irradiation based on satellite observations. Sol. Energy 110, 22–38 (2014). http://www.sciencedirect.com/science/article/pii/S0038092X14004393

    Article  Google Scholar 

  5. Boland, J.: Spatial-temporal forecasting of solar radiation. Renew. Energy 75, 607–616 (2015). http://www.sciencedirect.com/science/article/pii/S0960148114006624

    Article  Google Scholar 

  6. Bonilla, E.V., Krauth, K., Dezfouli, A.: Generic inference in latent Gaussian process models (2016). arXiv preprint: arXiv:1609.00577

  7. Copper, J., Sproul, A., Jarnason, S.: Photovoltaic (pv) performance modelling in the absence of onsite measured plane of array irradiance (poa) and module temperature. Renew. Energy 86, 760–769 (2016)

    Article  Google Scholar 

  8. Cressie, N., Wikle, C.K.: Statistics for Spatio-Temporal Data. John Wiley & Sons, Hoboken (2011)

    MATH  Google Scholar 

  9. David, M., Ramahatana, F., Trombe, P., Lauret, P.: Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models. Sol. Energy 133, 55–72 (2016). http://www.sciencedirect.com/science/article/pii/S0038092X16300172

    Article  Google Scholar 

  10. Diagne, M., David, M., Lauret, P., Boland, J., Schmutz, N.: Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renew. Sustain. Energy Rev. 27, 65–76 (2013). http://www.sciencedirect.com/science/article/pii/S1364032113004334

    Article  Google Scholar 

  11. Domke, J., Engerer, N., Menon, A., Webers, C.: Distributed solar prediction with wind velocity (2016)

    Google Scholar 

  12. Gutierrez-Corea, F.V., Manso-Callejo, M.A., Moreno-Regidor, M.P., Manrique-Sancho, M.T.: Forecasting short-term solar irradiance based on artificial neural networks and data from neighboring meteorological stations. Sol. Energy 134, 119–131 (2016). http://www.sciencedirect.com/science/article/pii/S0038092X16300536

    Article  Google Scholar 

  13. Hensman, J., Fusi, N., Lawrence, N.D.: Gaussian processes for big data. In: Uncertainty in Artificial Intelligence (2013)

    Google Scholar 

  14. Inman, R.H., Pedro, H.T., Coimbra, C.F.: Solar forecasting methods for renewable energy integration. Prog. Energy Combust. Sci. 39(6), 535–576 (2013)

    Article  Google Scholar 

  15. Lauret, P., Voyant, C., Soubdhan, T., David, M., Poggi, P.: A benchmarking of machine learning techniques for solar radiation forecasting in an insular context. Sol. Energy 112, 446–457 (2015)

    Article  Google Scholar 

  16. Li, J., Ward, J.K., Tong, J., Collins, L., Platt, G.: Machine learning for solar irradiance forecasting of photovoltaic system. Renew. Energy 90, 542–553 (2016). http://www.sciencedirect.com/science/article/pii/S0960148115305747

    Article  Google Scholar 

  17. Lonij, V.P., Brooks, A.E., Cronin, A.D., Leuthold, M., Koch, K.: Intra-hour forecasts of solar power production using measurements from a network of irradiance sensors. Sol. Energy 97, 58–66 (2013)

    Article  Google Scholar 

  18. Pelland, S., Remund, J., Kleissl, J., Oozeki, T., De Brabandere, K.: Photovoltaic and solar forecasting: state of the art. iea pvps task 14, subtask 3.1. report iea-pvps t14–01: 2013. Technical report (2013). ISBN: 978-3-906042-13-8

    Google Scholar 

  19. Quiñonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 6, 1939–1959 (2005)

    MATH  MathSciNet  Google Scholar 

  20. Rana, M., Koprinska, I., Agelidis, V.G.: Univariate and multivariate methods for very short-term solar photovoltaic power forecasting. Energy Convers. Manag. 121, 380–390 (2016)

    Article  Google Scholar 

  21. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  22. Sampson, P.D., Guttorp, P.: Nonparametric estimation of nonstationary spatial covariance structure. J. Am. Stat. Assoc. 87(417), 108–119 (1992)

    Article  Google Scholar 

  23. Shinozaki, K., Yamakawa, N., Sasaki, T., Inoue, T.: Areal solar irradiance estimated by sparsely distributed observations of solar radiation. IEEE Trans. Power Syst. 31(1), 35–42 (2016)

    Article  Google Scholar 

  24. Titsias, M.: Variational learning of inducing variables in sparse Gaussian processes. In: Artificial Intelligence and Statistics (2009)

    Google Scholar 

  25. Voyant, C., Notton, G., Kalogirou, S., Nivet, M.L., Paoli, C., Motte, F., Fouilloy, A.: Machine learning methods for solar radiation forecasting: a review. Renew. Energy 105, 569–582 (2017). http://www.sciencedirect.com/science/article/pii/S0960148116311648

    Article  Google Scholar 

  26. Yang, D., Gu, C., Dong, Z., Jirutitijaroen, P., Chen, N., Walsh, W.M.: Solar irradiance forecasting using spatial-temporal covariance structures and time-forward kriging. Renew. Energy 60, 235–245 (2013). http://www.sciencedirect.com/science/article/pii/S0960148113002759

    Article  Google Scholar 

  27. Yang, D., Ye, Z., Lim, L.H.I., Dong, Z.: Very short term irradiance forecasting using the lasso. Sol. Energy 114, 314–326 (2015). http://www.sciencedirect.com/science/article/pii/S0038092X15000304

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Solar Analytics Pty Ltd. and performed on behalf of the Cooperative Research Centre for Low-Carbon Living (University of New South Wales and Solar Analytics Pty Ltd.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Dahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dahl, A., Bonilla, E. (2017). Scalable Gaussian Process Models for Solar Power Forecasting. In: Woon, W., Aung, Z., Kramer, O., Madnick, S. (eds) Data Analytics for Renewable Energy Integration: Informing the Generation and Distribution of Renewable Energy. DARE 2017. Lecture Notes in Computer Science(), vol 10691. Springer, Cham. https://doi.org/10.1007/978-3-319-71643-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71643-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71642-8

  • Online ISBN: 978-3-319-71643-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics