Skip to main content

Minimizing Grid Interaction of Solar Generation and DHW Loads in nZEBs Using Model-Free Reinforcement Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10691))

Abstract

This study applies model-free reinforcement learning (RL) on a case study based in Utrecht province in the Netherlands to optimize for on-site renewable energy. This aims at reducing the interaction of net zero-energy buildings with the grid as a result of an increase of heat pump installations and renewable energy systems (RES) integration. It is believed that this will become increasingly more important since the regulations regarding 2020 and beyond ascribe significant increase in energy efficiency of the built environment. On-site RES self-consumption is therefore a central lead in this research. The project data comprise air source heat pump and solar energy data of 6 different households for the months June to November 2016. The RL algorithm is applied to the different data sets to derive an optimized individual and generalized control strategy. Simulations were carried on, to acquire the resulting energy consumption, self-consumption, and self-sufficiency. The results show an increase of individual self-consumption between 17% and 348% and self-sufficiency between 18% and 72%. This results in an additional monetary benefit for the occupants based on the transition proposals of 2020 for the renewable energy generation net-metering abolishment in the Netherlands. Furthermore, reducing the grid interaction implies benefits for the grid operators in terms of investments required for grid reinforcement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rijksoverheid website, Onderzoeken Energie Gebouwde Omgeving, https://www.rijksoverheid.nl/onderwerpen/onderzoeken-over-bouwen-wonen-en-leefomgeving/onderzoeken-energie-gebouwde-omgeving. Accessed 07 Apr 2017

  2. Van den Oosterkamp, P., Koutstaal, O., van der Welle, A., de Joode, J., Lenstra, J., van Hussen, K., Haffner, R.: The role of DSOs in a Smart Grid environment. ECORYS, Amsterdam/Rotterdam (2014)

    Google Scholar 

  3. Lawrence, T.M., Boudreau, M., Helsen, L., Henze, G., Mohammadpour, J., Noonan, D., Pateeuw, D., Pless, S., Watson, R.T.: Ten questions concerning integration smart buildings into the smart grid. In: Building and Environment, vol. 108, pp. 273–283. Elsevier (2016)

    Google Scholar 

  4. Yang, R., Wang, L.: Multi-objective optimization for decision-making of energy management in building automation and control. In: Sustainable Cities and Society, vol. 2, pp. 1–7. Elsevier (2012)

    Google Scholar 

  5. Klein, L., Kwak, J., Kavulya, G., Jazizadeh, F., Becerik-Gerber, B., Varakantham, P., Tambe, M.: Coordinating occupant behavior for building energy and comfort management using multi-agent systems. In: Automation in Constructions, vol. 22, pp. 525–526. Elsevier (2012)

    Google Scholar 

  6. Lund, P., Lindgren, J., Mikkola, J., Salpakari, J.: Review of energy system flexibility measures to enable high levels of variable renewable electricity. In: Renewable and Sustainable Energy Reviews, vol. 45, pp. 785–807. Elsevier (2015)

    Google Scholar 

  7. Sossan, F., Kosek, A.M., Martinenas, S., Marinelli, M., Bindner, H.W.: Scheduling of domestic water heater power demand for maximizing PV self-consumption using model predictive control. Technical University of Denmark, Lyngby (2013)

    Book  Google Scholar 

  8. Arteconi, A., Hewitt, N.J., Polonara, F.: Domestic demand-side management (DSM): Role of heat pumps and thermal energy storage (TES) systems. In: Applied Thermal Engineering, vol. 51(1–2), pp. 155–165. Elsevier (2013)

    Google Scholar 

  9. Kazmi, H., D’Oca, S., Delmastro C., Lodeweyckx, S., Corgnati, S.P. Generalizable occupant-driven optimization model for domestic hot water production in NZEB. In: Applied Energy, vol. 175, pp. 1–15. Elsevier (2016)

    Google Scholar 

  10. Ijaz Dar, U., Sartori, I., Georges, L., Novakovic, V.: Advanced control of heat pumps for improved flexibility of Net-ZEB towards the grid. In: Energy and Buildings, vol. 69, pp. 74–84. Elsevier (2014)

    Google Scholar 

  11. De Coninck, R., Baetens, D., Saelens, D., Woyte, A., Helsen, L.: Rule-based demand side management of domestic hot water production with heat pumps in zero energy neighborhoods. J. Build. Perform. Simul. 7, 271–288 (2014)

    Article  Google Scholar 

  12. Ruelens, F.: Residential Demand Response Using Reinforcement Learning. Arenberg Doctoral School, Faculty of Engineering Science, KU Leuven, Leuven (2016)

    Google Scholar 

  13. Portaal homepage, http://www.portaal.nl/stroomversnellingsoesterberg.aspx. Accessed 02 July 2016

  14. Pruissen, O.P., Kamphuis, I.G.: Grote concentraties warmtepompen in een woonwijk en gevolgen elektriciteitsnetwerk. Energy research Centre of the Netherlands (ECN), Petten (2010)

    Google Scholar 

  15. Rijksdienst voor Ondernemend Nederland, Saldering, zelflevering en tariefkorting, http://www.rvo.nl/onderwerpen/duurzaam-ondernemen/duurzame-energie-opwekken/duurzame-energie/saldering-en-zelflevering. Accessed 26 June 2016

  16. Merosch, de effecten van en oplossingen voor aanpassing van salderingsregeling op NOM-woningen in 2020, http://www.merosch.nl/download/CAwdEAwUUkBFXw==&inline=0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adhra Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ali, A., Kazmi, H. (2017). Minimizing Grid Interaction of Solar Generation and DHW Loads in nZEBs Using Model-Free Reinforcement Learning. In: Woon, W., Aung, Z., Kramer, O., Madnick, S. (eds) Data Analytics for Renewable Energy Integration: Informing the Generation and Distribution of Renewable Energy. DARE 2017. Lecture Notes in Computer Science(), vol 10691. Springer, Cham. https://doi.org/10.1007/978-3-319-71643-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71643-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71642-8

  • Online ISBN: 978-3-319-71643-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics