Skip to main content

Single-Phase Flow and Condensation in Pillow-Plate Condensers

  • Chapter
  • First Online:

Abstract

Pillow-plate condensers (PPC) are a new class of heat exchangers used for condensation tasks. Their performance is often found to be superior to conventional equipment. Today, PPC are mostly encountered in distillation applications, as condensers are implemented directly into the column top section. For a better evaluation of the PPC suitability in a particular process, understanding of their main characteristics is essential. Such understanding is based on the knowledge of different aspects, e.g. heat transport and fluid flow, both in single-phase and two-phase systems, which are complex and interrelated. This chapter gives a brief overview of these issues. Furthermore, specific applications and construction details are discussed, and the future potential of PPC is highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

A :

Area (m2)

d h :

Hydraulic diameter (m)

d wp :

Diameter of welding points (m)

e i :

Inner expansion of the pillow plate (m)

h :

Heat transfer coefficient (W m−2 K−1)

i, j, k :

Correlation parameters in Eqs. (1) and (2)

K :

Roughness parameter (m)

l PP :

Pillow-plate length (m)

\( \dot{m} \) :

Mass flow rate (kg s−1)

Nu :

Nusselt number (-)

p :

Pressure (Pa)

Δp :

Pressure loss (Pa)

Pr :

Prandtl number (-)

q :

Heat flux (W m−2)

\( \dot{Q} \) :

Heat flow rate (W)

Re :

Reynolds number (-)

R f :

Fouling resistance (m2 K W−1)

s o :

Distance of the gap between two neighbouring pillow plates (m)

s w :

Wall thickness (m)

s L :

Half longitudinal distance between welding points (m)

s T :

Transversal distance between welding points (m)

u m :

Mean overall heat transfer coefficient (W m−2 K−1)

v :

Flow velocity (m s-1)

w e :

Edge width (m)

w PP :

Pillow-plate width (m)

Г :

Mass flux (kg m−2 s−1)

ζ :

Darcy friction factor (-)

ϑ :

Temperature (K)

Δϑ ln,m :

Logarithmic mean temperature difference (K)

λ :

Thermal conductivity (W m−1 K−1)

ρ :

Density (kg m−3)

ϕ :

Volume fraction (%)

abs:

Absolute

b:

Bulk

CB:

Chlorobenzene

cm:

Cooling medium

cond:

Condensation

cs:

Cross-section

ht:

Heat transfer

i:

Inner

in:

Inlet

m:

Mean

max:

Maximum

N2 :

Nitrogen

o:

Outer

out:

Outlet

P1:

Single-phase

P2:

Two-phase

tot:

Total

References

  • Dittus FW, Boelter LMK (1985) Heat transfer in automobile radiators of the tubular type. Int Comm Heat Mass Transf 12:3–22

    Google Scholar 

  • Djakow E, Springer R, Homberg W, Piper M, Tran JM, Zibart A, Kenig EY (2017) Incremental electrohydraulic forming—a new approach for the manufacture of structured multifunctional sheet metal blanks. In: Proceedings of 20th international ESAFORM conference on material forming, 2015 Dublin Ireland

    Google Scholar 

  • Garimella S, Fronk BM (2016) Condensation heat transfer. In: Thome JR (ed) Encyclopedia of two-phase heat transfer and flow I—Fundamentals and methods. World Scientific, Singapore

    Google Scholar 

  • Mitrovic J, Maletic B (2011) Numerical simulation of fluid flow and heat transfer in thermoplates. Chem Eng Technol 34:1439–1448. https://doi.org/10.1002/ceat.201100271

    Article  Google Scholar 

  • Mitrovic J, Peterson R (2007) Vapor condensation heat transfer in a thermoplate heat exchanger. Chem Eng Technol 13:907–920. https://doi.org/10.1002/ceat.200700082

    Article  Google Scholar 

  • Petukhov BS, Kirillov VV (1958) On heat exchange at turbulent flow of liquids in pipes (in Russian). Teploenergetika 4:63–68

    Google Scholar 

  • Piper M, Olenberg A, Tran JM, Kenig EY (2015) Determination of the geometric design parameters of pillow-plate heat exchangers. Appl Therm Eng 91:1168–1175. https://doi.org/10.1016/j.applthermaleng.2015.08.097

    Article  Google Scholar 

  • Piper M, Tran JM, Kenig EY (2016a) A CFD study of the thermo-hydraulic characteristics of pillow-plate heat exchangers. In: Proceedings of ASME 2016 heat transfer summer conference, Washington, D.C. USA

    Google Scholar 

  • Piper M, Zibart A, Tran JM, Kenig EY (2016b) Numerical investigation of turbulent forced convection heat transfer and fluid flow in pillow plates. Int J Heat Mass Transf 94:516–527. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.014

    Article  Google Scholar 

  • Piper M, Kenig EY (2017) Kissenplatten-Wärmeübertrager, Patent pending

    Google Scholar 

  • Piper M, Zibart A, Kenig EY (2017) New design equations for turbulent forced convection heat transfer and pressure loss in pillow-plate channels. Int J Therm Sci 120:459–468. https://doi.org/10.1016/j.ijthermalsci.2017.06.012

    Article  Google Scholar 

  • Sieder EN, Tate GE (1936) Heat transfer and pressure drop of liquids in tubes. Ind Eng Chem 28:1429–1435

    Google Scholar 

  • Tran JM, Piper M, Kenig EY (2013) Experimental study on the heat transfer characteristics of pillow-plate condensers. In: Proceedings WCCE9 2013 Seoul Korea

    Google Scholar 

  • Tran JM, Piper M, Kenig EY (2015a) Experimentelle Untersuchung des konvektiven Wärmeübergangs und Druckverlustes in einphasig durchströmten Thermoblechen. Chem Ing Tech 87:226–234. https://doi.org/10.1002/cite.201400140

    Article  Google Scholar 

  • Tran JM, Piper M, Kenig EY (2015b) Experimental investigation of heat transfer and pressure drop in pillow-plate condensers. In: Proceedings AIChE spring meeting 2015, Austin, USA

    Google Scholar 

  • Tran JM, Sommerfeld S, Piper M, Kenig EY (2015c) Investigation of pillow-plate condensers for the application in distillation columns. Chem Eng Res Des 99:67–74. https://doi.org/10.1016/j.cherd.2015.03.031

    Article  Google Scholar 

  • Tran JM, Kenig EY (2016) Kissenplatten-Wärmeübertrager. Patent specification DE102015008094A1. Int. CI F28F 3/12. Germany

    Google Scholar 

  • Tran JM, Kenig EY (2017) Condensation. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (ed.) (2010) VDI heat atlas, 2nd edn. Springer-Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugeny Y. Kenig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tran, J.M., Piper, M., Kenig, E.Y. (2018). Single-Phase Flow and Condensation in Pillow-Plate Condensers. In: Bart, HJ., Scholl, S. (eds) Innovative Heat Exchangers. Springer, Cham. https://doi.org/10.1007/978-3-319-71641-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71641-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71639-8

  • Online ISBN: 978-3-319-71641-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics