Skip to main content

Polymer Composite Heat Exchangers

  • Chapter
  • First Online:
Innovative Heat Exchangers

Abstract

The innovative development of polymer composite tubes exhibiting high thermal conductivities for use in heat exchangers, various aspects for implementing these tubes and designing polymer composite heat exchangers are presented. Polymer composite grades based on polypropylene and polyphenylene sulphide filled with graphite have been developed by Technoform Kunststoffprofile GmbH (Lohfelden, Germany). A special extrusion process allows high filler loadings of up to 60 vol% and the orientation of filler particles in the polymer matrix to reach enhanced thermal conductivities in the radial direction. Thermal and mechanical properties, chemical resistance to various acids and alkaline media, lifetime behaviour, heat transfer performance and fouling behaviour were studied for composites with 50 vol% graphite. The extruded polymer composite tubes have a thermal conductivity of about 13–20 W/(m K) which is around 50–100 times higher than that of standard polymers and is comparable to stainless steel grades. The excellent chemical resistance, low weight, good processability as well as highly promising initial test rig results in fouling studies compared to corrosion-resistant metals open up cost-efficient opportunities for heat exchangers in various industries such as chemical, petrochemical, oil and gas, food and beverage, and seawater desalination industries. Important design aspects such as various possibilities of mounting the polymer composite tubes in the tube plates and the maximum unsupported tube span for avoiding tube failures by flow-induced vibrations are discussed. A potential enhancement of heat transfer by shaping polymer composite tubes other than circular plain tubes and the construction of fully polymer-based heat exchangers will be in the focus of future development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Heat transfer surface area (m2)

A :

Dimensionless tube axial stress multiplier

A :

Pre-exponential factor (1/s)

c :

Concentration (mol/m3)

C :

Dimensionless constant in Eq. (11)

C L :

Dimensionless lift coefficient

CF:

Cleanliness factor

d :

Tube diameter (m)

D :

Dimensionless parameter in Eq. (10)

E a :

Activation energy (J/mol)

E t :

Modulus of elasticity (Pa)

f n :

Natural frequency (1/s)

h :

Heat transfer coefficient (W/(m2 K))

I :

Second moment of area (m4)

k :

Thermal conductivity (W/(m K))

k deg :

Rate constant of polymer degradation (1/s)

L :

Unsupported tube span (m)

L t :

Tube length (m)

\(\dot{m}\) :

Mass flow rate (kg/s)

\(\dot{Q}\) :

Heat transfer rate (W)

R :

Universal gas constant (R = 8.314 J/(mol K)) (J/(mol K))

R a :

Arithmetic mean roughness (µm)

R f :

Fouling resistance (m2 K/W)

R z :

Mean roughness depth (µm)

s :

Tube wall thickness (m)

S :

Salinity (g/kg)

t :

Time (s)

T :

Temperature (K)

u :

Fluid flow velocity (m/s)

U :

Overall heat transfer coefficient (W/(m2 K))

y vs :

Vortex shedding amplitude (m)

y tb :

Turbulent buffeting amplitude (m)

α :

Linear coefficient of thermal expansion (1/K)

Γ :

Wetting rate (kg/(s m))

δ T :

Dimensionless logarithmic decrement

ϑ :

Temperature (°C)

ϑ g :

Glass transition temperature (°C)

ϑ m :

Melting temperature (°C)

ρ :

Density (kg/m3)

σ m :

Tensile strength (Pa)

ϕ :

Volume fraction of filler

ω 0 :

Effective weight of the tube per unit length (kg/m)

0:

Initial condition

c:

Clean

C:

Compound

co:

Condensation

crit:

Critical

ev:

Evaporation

f:

Fouling, fouled condition

F:

Filler

i:

Inner, inside

m:

Mean

max:

Maximum

o:

Outer, outside

P:

Polymer

t :

At time t

W:

Wall

AAS:

Atomic absorption spectroscopy

DVGW:

German Technical and Scientific Association for Gas and Water

EDXS:

Energy-dispersive X-ray spectroscopy

FEM:

Finite element method

FEP:

Polyfluoroethylene propylene

HDT:

Heat deflection temperature

MED:

Multiple-effect distillation

PA 6, PA 66:

Polyamides

PB:

Polybutylene

PBT:

Polybutylene terephthalate

PC:

Polycarbonate

PE:

Polyethylene

PEEK:

Polyetheretherketone

PEEK-GR:

Polyetheretherketone–graphite composite

PET:

Polyethylene terephthalate

PFA:

Perfluoroalkoxy

PP:

Polypropylene

PP-GR:

Polypropylene–graphite composite

PPO:

Polyphenylene oxide

PPS:

Polyphenylene sulphide

PPS-GR:

Polyphenylene sulphide–graphite composite

PS:

Polystyrene

PSU:

Polysulfone

PTFE:

Polytetrafluoroethylene

PV:

Photovoltaic cell

PVDF:

Polyvinylidene fluoride

SEM:

Scanning electron microscopy

TEMA:

Tubular Exchanger Manufacturers Association, Inc.

THB:

Transient hot bridge

References

  • Agari Y, Uno T (1985) Thermal conductivity of polymer filled with carbon materials: effect of conductive particle chains on thermal conductivity. J Appl Polym Sci 30:2225–2235

    Article  Google Scholar 

  • Al-Janabi A, Malayeri MR (2015) A criterion for the characterization of modified surfaces during crystallization fouling based on electron donor component of surface energy. Chem Eng Res Des 100:212–227

    Article  Google Scholar 

  • Amesöder S (2010) Wärmeleitende Kunststoffe für das Spritzgießen. Dissertation, Universität Erlangen-Nürnberg

    Google Scholar 

  • Amesöder S, Heinle C, Ehrenstein GW, Schmachtenberg E (2007) Injection moulding of thermally conducting polymers for mechatronic applications. In: Proceedings of the polymer processing society 23rd annual meeting, Salvador, 27–31 May 2007

    Google Scholar 

  • Bigg DM (1986) Electrical properties of metal-filled polymer composites. In: Bhattacharya SK (ed) Metal-filled polymers. Marcel Dekker, New York, pp 165–226

    Google Scholar 

  • Boeck K (2011) Zum Einsatz polymerbasierter Werkstoffe in Mehreffekt-Verdampfern für die Meerwasserentsalzung. Dissertation, Universität Bremen. Shaker Verlag, Aachen

    Google Scholar 

  • Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61:1–28

    Article  Google Scholar 

  • Bruggeman DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys 416:636–664

    Article  Google Scholar 

  • CALORPLAST Wärmetechnik GmbH (2017) CALORPLAST Wärmetechnik - Corrosion resistant heat exchangers for critical media. http://www.calorplast-waermetechnik.de/en. Accessed 28 Feb 2017

  • Cevallos JG, Bergles AE, Bar-Cohen A, Rodgers P, Gupta SK (2012) Polymer heat exchangers—history, opportunities, and challenges. Heat Transfer Eng 33(13):1075–1093

    Article  Google Scholar 

  • Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016a) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85

    Article  Google Scholar 

  • Chen X, Su Y, Reay D, Riffat S (2016b) Recent research in polymer heat exchangers—a review. Renew Sustain Energy Rev 60:1367–1386

    Article  Google Scholar 

  • Cheng S, Vachon R (1970) A technique for predicting the thermal conductivity of suspensions, emulsions and porous materials. Int J Heat Mass Transf 13:537–543

    Article  Google Scholar 

  • Cole-Parmer Instrument Company, LLC. (2017) Chemical Compatibility Database. https://www.coleparmer.com/Chemical-Resistance. Accessed 1 Mar 2017

  • Dobkowski Z, Rudnik E (1997) Lifetime prediction for polymers via the temperature of initial decomposition. J Therm Anal 48:1393–1400

    Article  Google Scholar 

  • Dreiser C (2016) Falling liquid film enhancement, fouling mitigation and conceptual design of polymer heat exchangers. Dissertation, Technische Universität Kaiserslautern. Shaker Verlag, Aachen

    Google Scholar 

  • Ehrenstein GW, Pongratz S (2013) Resistance and stability of polymers. Carl Hanser, Munich

    Google Scholar 

  • El-Dessouky HT, Ettouney HM (1999) Plastic/compact heat exchangers for single-effect desalination systems. Desalination 89:122–271

    Google Scholar 

  • Eucken A (1932) Die Wärmeleitfähigkeit keramischer feuerfester Stoffe. Ihre Berechnung aus der Wärmeleitfähigkeit der Bestandteile, Forschungsheft/Verein Deutscher Ingenieure 353

    Google Scholar 

  • Förster ML (2001) Verminderung des Kristallisationsfoulings durch gezielte Beeinflussung der Grenzflächen zwischen Kristallen und Wärmeübertragungsfläche. Dissertation, Technische Universität Braunschweig

    Google Scholar 

  • Förster M, Bohnet M (2000) Modification of molecular interactions at the interface crystal/heat transfer surface to minimize heat exchanger fouling. Int J Therm Sci 39:697–708

    Article  Google Scholar 

  • Geddert T, Bialuch I, Augustin W, Scholl S (2009) Extending the induction period of crystallization fouling through surface coating. Heat Transfer Eng 30:868–875

    Article  Google Scholar 

  • Geißler S, Sczech D (2004) Tubes with structured surfaces. In: Mitrovic J (ed) Heat exchanger and condenser tubes—tube types, materials, attributes, machining. Publico Publications, Essen, pp 116–124

    Google Scholar 

  • Gelbe H, Ziada S (2010) Vibration of tube bundles in heat exchangers. In: VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (ed) VDI Heat Atlas. Springer, Berlin, pp 1553–1585

    Google Scholar 

  • Glade H, Stärk A, Bart H-J, Krätz L, Dreiser C, Zöllmer V, Haberkorn A (2014) Entwicklung polymerbasierter Wärmeübertrager für den Einsatz in Meerwasserentsalzungsanlagen. Final Report, IGF Research Project 16959N. http://www.veu.de/files/abschlussbericht_16959.pdf

  • Habonim Ltd. (2013) Chemical Compatibility Guide. http://habonim.com. Accessed 1 Mar 2017

  • Halary J-L, Lauprêtre F, Monnerie L (2011) Polymer materials—macroscopic properties and molecular interpretations. Wiley, Hoboken

    Google Scholar 

  • Hammerschmidt U, Meier V (2006) New transient hot-bridge sensor to measure thermal conductivity, thermal diffusivity, and volumetric specific heat. Int J Thermophys 27(3):840–865

    Article  Google Scholar 

  • Hasan A, Siren K (2004) Performance investigation of plain circular and oval tube evaporatively cooled heat exchangers. Appl Therm Eng 24:777–790

    Article  Google Scholar 

  • Heinle C (2012) Simulationsgestützte Entwicklung von Bauteilen aus wärmeleitenden Kunststoffen. Dissertation, Universität Erlangen-Nürnberg

    Google Scholar 

  • Hewitt GF, Shires GL, Bott TR (1994) Process heat transfer. CRC Press, Boca Raton

    Google Scholar 

  • Kazi SN, Duffy GG, Chen XD (2010) Mineral scale formation and mitigation on metals and polymeric heat exchanger surface. Appl Therm Eng 30:2236–2242

    Article  Google Scholar 

  • Kester DR, Duedall IW, Connors DN, Pytkowicz RM (1967) Preparation of artificial seawater. Limnol Oceanogr 12:176–179

    Article  Google Scholar 

  • Khan WA, Culham JR, Yovanovich MM (2005) Fluid flow around and heat transfer from elliptical cylinders: analytical approach. J Thermophys Heat Transfer 19(2):178–185

    Article  Google Scholar 

  • Krömer K, Will S, Loisel K, Nied S, Detering J, Kempter A, Glade H (2015) Scale formation and mitigation of mixed salts in horizontal tube falling film evaporators for seawater desalination. Heat Transfer Eng 36(7–8):750–762

    Article  Google Scholar 

  • Kunststoff Information (2014) Kunststoff Information Verlagsgesellschaft mbH, Bad Homburg. https://www.kiweb.de. Accessed 20 June 2014

  • Lattemann S, Höpner T (2003) Seawater desalination—impacts of brine and chemical discharge on the marine environment. Desalination Publications, L’Aquila

    Google Scholar 

  • Lattemann S (2010) Development of an environmental impact assessment and decision support system for seawater desalination plants. Dissertation, Delft University of Technology

    Google Scholar 

  • Lin F, Bhatia GS, Ford JD (1993) Thermal conductivities of powder-filler epoxy resins. J Appl Polym Sci 49:1901–1908

    Article  Google Scholar 

  • Linseis GmbH (2017) THB—transient hot bridge—thermal conductivity meter, specifications. https://www.linseis.com/en/our-products/thermal-diffusivity-thermal-conductivity/thb-transient-hot-bridge. Accessed 1 Mar 2017

  • Martienssen W, Warlimont H (2005) Springer handbook of condensed matter and material data. Springer, Berlin

    Google Scholar 

  • MatWeb, LLC. (2017) Material property data, online database of engineering materials. http://www.matweb.com. Accessed 28 Feb 2017

  • Maxwell JC (1873) A treatise on electricity and magnetism, vol I. Clarendon Press, Oxford

    Google Scholar 

  • Millero FJ (2006) Chemical oceanography. CRC Press, Boca Raton

    Google Scholar 

  • Model R, Stosch R, Hammerschmidt U (2007) Virtual experiment design for the transient hot-bridge sensor. Int J Thermophys 28(5):1447–1460

    Article  Google Scholar 

  • Müller-Steinhagen H (2010) Fouling of heat exchanger surfaces. In: VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (ed) VDI Heat Atlas. Springer, Berlin, pp 79–104

    Google Scholar 

  • Müller-Steinhagen H (2000) Modellierung der Ablagerungsbildung in Wärmeübertragern. Berichte zur Energie- und Verfahrenstechnik BEV. Ed. A. Leipertz, ESYTEC Energie- und Systemtechnik GmbH, Erlangen

    Google Scholar 

  • Naik G (2004) Industrial power tubes—structured surface tubes. In: Mitrovic J (ed) Heat exchanger and condenser tubes—tube types, materials, attributes, machining. Publico Publications, Essen, pp 104–115

    Google Scholar 

  • Nielsen LE (1973) Thermal conductivity of particulate-filled polymers. J Appl Polym Sci 17:3819–3820

    Article  Google Scholar 

  • Ophir A, Gendel A (2007) Latest developments in MED and MVC thermal desalination processes. In: Proceedings of IDA World Congress on desalination and water reuse. Maspalomas, 21–26 Oct 2007

    Google Scholar 

  • Osswald TA, Baur E, Brinkmann S, Oberbach K, Schmachtenberg E (2006) International plastics handbook. Carl Hanser, Munich

    Google Scholar 

  • Ota T, Nishiyama H, Taoka Y (1984) Heat transfer and flow around an elliptic cylinder. Int J Heat Mass Transf 27(10):1771–1779

    Article  Google Scholar 

  • Öztürk G (2012) Hochgefüllte Graphit-Polymer-Compounds für Einsätze im Wärmemanagement. Dissertation, Technische Universität Darmstadt

    Google Scholar 

  • Pierson HO (1993) Handbook of carbon, graphite, diamonds and fullerenes. Noyes, Park Ridge

    Google Scholar 

  • Progelhof RC, Throne JL, Ruetsch RR (1976) Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci 16:615–625

    Article  Google Scholar 

  • Scholz F (2004) Heat exchangers made of plastic pipes. In: Mitrovic J (ed) Heat exchanger and condenser tubes—tube types, materials, attributes, machining. Publico Publications, Essen

    Google Scholar 

  • Schweitzer PA (2007) Corrosion of polymers. CRC Press, Boca Raton

    Google Scholar 

  • Sheikholeslami R (2007) Fouling in membranes and thermal units—a unified approach—its principles, assessment, control and mitigation. Desalination Publications, L’Aquila

    Google Scholar 

  • Shinko Metal Products Co., Inc., Japan (2017) Copper alloy tubes for heat-exchanger. Brochure http://www.shinkometal.co.jp/catalog/copperalloy-en-sc.pdf. Accessed 1 Mar 2017

  • Stärk A, Krömer K, Loisel K, Odiot K, Nied S, Glade H (2017) Impact of tube surface properties on crystallization fouling in falling film evaporators for seawater desalination. Heat Transfer Eng 38(7–8):762–774

    Article  Google Scholar 

  • Stärk A, Loisel K, Odiot K, Feßenbecker A, Kempter A, Nied S, Glade H (2014) Wetting behaviour of different tube materials and its influence on scale formation in multiple-effect distillers. Paper presented at the conference desalination for the environment, clean water and energy, Limassol, Cyprus, 11–15 May 2014

    Google Scholar 

  • Stärk A, Loisel K, Odiot K, Feßenbecker A, Kempter A, Nied S, Glade H (2015) Wetting behaviour of different tube materials and its influence on scale formation in multiple-effect distillers. Desalination and Water Treatment 55:2502–2514

    Article  Google Scholar 

  • Sunden B (2005) High temperature heat exchangers (HTHE). Proceedings of fifth international conference on enhanced, compact and ultra-compact heat exchangers: science engineering and technology. In: Shah RK, Ishizuka M, Rudy TM, Wadekar VV (eds) Engineering conferences international, Hoboken, NJ, USA

    Google Scholar 

  • The London Metal Exchange (2014) World centre for industrial metals trading. https://www.lme.com. Accessed 20 June 2014

  • Thulukkanam K (2013) Heat exchanger design handbook. CRC Press, Boca Raton

    Google Scholar 

  • T’Joen C, Park Y, Wang Q, Sommers A, Han X, Jacobi A (2009) A review on polymer heat exchangers for HVAC&R applications. Int J Refrig 32:763–779

    Article  Google Scholar 

  • Tubular Exchanger Manufacturers Association (TEMA) (1999) Standards of the tubular exchanger manufacturers association. Tubular Exchanger Manufacturers Association, Inc., New York

    Google Scholar 

  • Übler W (2002) Erhöhung der thermischen Leitfähigkeit elektrisch isolierender Polymerwerkstoffe. Dissertation, Universität Erlangen-Nürnberg

    Google Scholar 

  • Wang Y, Davidson JH, Francis LF (2005) Scaling in polymer tubes and interpretation for use in solar water heating systems. J SolEnergy Eng 127:3–14

    Google Scholar 

  • Wu Z, Francis LF, Davidson JH (2009) Scale formation on polypropylene and copper tubes in mildly supersaturated tap water. Sol Energy 83:636–645

    Article  Google Scholar 

  • Wu Z, Davidson JH, Francis LF (2010) Effect of water chemistry on calcium carbonate deposition on metal and polymer surfaces. J Colloid Interface Sci 343:176–187

    Article  Google Scholar 

  • Wypych G (2012) Handbook of polymers. ChemTec Publishing, Toronto

    Google Scholar 

  • Zaheed L, Jachuck RJJ (2004) Review of polymer compact heat exchangers, with special emphasis on a polymer film unit. Appl Therm Eng 24:2323–2358

    Article  Google Scholar 

  • Zarkadas DM, Sirkar KK (2004) Polymeric hollow fiber heat exchangers: an alternative for lower temperature applications. Ind Eng Chem Res 43:8093–8106

    Article  Google Scholar 

  • Zhao X, Chen XD (2011) A critical review of basic crystallography to salt crystallization fouling in heat exchangers. In: Proceedings of international conference on heat exchanger fouling and cleaning, Crete Island, 5–10 June 2011

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to M.Sc. Christoph Gatz, M.Sc. Sebastian Schilling, M.Sc. Alexander Stärk and M.Sc. Maximilian Waack for supporting the development of the polymer composite tubes with experimental and theoretical studies at the University of Bremen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Glade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glade, H., Moses, D., Orth, T. (2018). Polymer Composite Heat Exchangers. In: Bart, HJ., Scholl, S. (eds) Innovative Heat Exchangers. Springer, Cham. https://doi.org/10.1007/978-3-319-71641-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71641-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71639-8

  • Online ISBN: 978-3-319-71641-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics