Skip to main content

Nuclear Pore and Genome Organization and Gene Expression in Drosophila

  • Chapter
  • First Online:
Nuclear Pore Complexes in Genome Organization, Function and Maintenance

Abstract

Regulation of gene expression is central to the cell’s ability to respond to external cues and to establish and maintain its developmental identity. The Nuclear Pore Complex (NPC) forms the nuclear envelope-spanning channel that mediates selective nucleo-cytoplasmic transport of macromolecules. In addition to contributing to gene expression via its transport functions, the NPC comes in close contact with the underlying chromatin and plays a role in regulation of gene expression of the associated gene targets. In recent years, studies in Drosophila and other organisms have identified numerous physiological roles for NPC components, including functions in immune response, tissue-specific development, epigenetic processes and neurodegeneration. This chapter focuses on the current knowledge of the physiological roles of NPC components and on the relationship between the NPC and chromatin regulation, obtained in the fly model. Findings, described here, demonstrate the far-reaching potential of NPC components to regulate gene expression via both transport and chromatin-binding mechanisms. Furthermore, they reveal Drosophila to be a useful experimental system for future dissections of the in vivo phenotypes and gene regulatory functions of the NPC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar A, Gasser SM (2007) The nuclear envelope and transcriptional control. Nat Rev Genet 8:507–17

    Article  CAS  PubMed  Google Scholar 

  • Alharbi RA, Pettengell R, Pandha HS et al (2013) The role of HOX genes in normal hematopoiesis and acute leukemia. Leukemia 27:1000–8

    Article  CAS  PubMed  Google Scholar 

  • Barbash DA (2007) Nup96-dependent hybrid lethality occurs in a subset of species from the simulans clade of Drosophila. Genetics 176:543–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blobel G (1985) Gene gating: a hypothesis. Proc Natl Acad Sci U S A 82:8527–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boeynaems S, Bogaert E, Michiels E et al (2016a) Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD. Sci Rep 6:20877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boeynaems S, Bogaert E, Van Damme P et al (2016b) Inside out: the role of nucleocytoplasmic transport in ALS and FTLD. Acta Neuropathol 132:159–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breuer M, Ohkura H (2015) A negative loop within the nuclear pore complex controls global chromatin organization. Genes Dev 29:1789–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brickner DG, Cajigas I, Fondufe-Mittendorf Y et al (2007) H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol 5:e81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown CR, Kennedy CJ, Delmar VA et al (2008) Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev 22:627–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukata L, Parker SL, D’Angelo MA (2013) Nuclear pore complexes in the maintenance of genome integrity. Curr Opin Cell Biol 25:378–86

    Article  CAS  PubMed  Google Scholar 

  • Burguete AS, Almeida S, Gao FB et al (2015) GGGGCC microsatellite RNA is neuritically localized, induces branching defects, and perturbs transport granule function. Elife 4:e08881

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabal GG, Genovesio A, Rodriguez-Navarro S et al (2006) SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441:770–3

    Article  CAS  PubMed  Google Scholar 

  • Canaani E, Nakamura T, Rozovskaia T et al (2004) ALL-1/MLL1, a homologue of Drosophila TRITHORAX, modifies chromatin and is directly involved in infant acute leukaemia. Br J Cancer 90:756–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capelson M, Liang Y, Schulte R et al (2010) Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140:372–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casolari JM, Brown CR, Komili S et al (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117:427–39

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Xu L (2010) Specific nucleoporin requirement for Smad nuclear translocation. Mol Cell Biol 30:4022–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chintapalli VR, Wang J, and Dow JAT (2007). Using FlyAtlas to identify better Drosophila models of human disease. Nature Genetics 39: 715–720.

    Google Scholar 

  • Colozza G, Montembault E, Quenerch’Du E et al (2011) Drosophila nucleoporin Nup154 controls cell viability, proliferation and nuclear accumulation of Mad transcription factor. Tissue Cell 43:254–61

    Article  CAS  PubMed  Google Scholar 

  • Csankovszki G (2009) Condensin function in dosage compensation. Epigenetics 4:212–5

    Article  CAS  PubMed  Google Scholar 

  • Cubenas-Potts C, Rowley MJ, Lyu X et al (2017) Different enhancer classes in Drosophila bind distinct architectural proteins and mediate unique chromatin interactions and 3D architecture. Nucleic Acids Res 45:1714–1730

    Article  PubMed  Google Scholar 

  • D’Angelo MA, Gomez-Cavazos JS, Mei A et al (2012) A change in nuclear pore complex composition regulates cell differentiation. Dev Cell 22:446–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Angelo MA, Hetzer MW (2008) Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol 18:456–66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dejesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshpande AJ, Deshpande A, Sinha AU et al (2014) AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes. Cancer Cell 26:896–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunker AK, Bondos SE, Huang F et al (2015) Intrinsically disordered proteins and multicellular organisms. Semin Cell Dev Biol 37:44–55

    Article  CAS  PubMed  Google Scholar 

  • Enninga J, Levay A, Fontoura BM (2003) Sec13 shuttles between the nucleus and the cytoplasm and stably interacts with Nup96 at the nuclear pore complex. Mol Cell Biol 23:7271–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feller C, Prestel M, Hartmann H et al (2011) The MOF-containing NSL complex associates globally with housekeeping genes, but activates only a defined subset. Nucleic Acids Res 40:1509–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferree PM, Barbash DA (2009) Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol 7:e1000234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franks TM, Benner C, Narvaiza I et al (2016) Evolution of a transcriptional regulator from a transmembrane nucleoporin. Genes Dev 30:1155–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freibaum BD, Lu Y, Lopez-Gonzalez R et al (2015) GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525:129–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelbart ME, Larschan E, Peng S et al (2009) Drosophila MSL complex globally acetylates H4K16 on the male X chromosome for dosage compensation. Nat Struct Mol Biol 16:825–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gigliotti S, Callaini G, Andone S et al (1998) Nup154, a new Drosophila gene essential for male and female gametogenesis is related to the nup155 vertebrate nucleoporin gene. J Cell Biol 142:1195–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorman M, Baker BS (1994) How flies make one equal two: dosage compensation in Drosophila. Trends Genet 10:376–80

    Article  CAS  PubMed  Google Scholar 

  • Gough SM, Slape CI, Aplan PD (2011) NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights. Blood 118:6247–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimaldi MR, Cozzolino L, Malva C et al (2007) Nup154 genetically interacts with cup and plays a cell-type-specific function during Drosophila melanogaster egg-chamber development. Genetics 175:1751–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimaud C, Becker PB (2009) The dosage compensation complex shapes the conformation of the X chromosome in Drosophila. Genes Dev 23:2490–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimaud C, Negre N, Cavalli G (2006) From genetics to epigenetics: the tale of Polycomb group and trithorax group genes. Chromosome Res 14:363–75

    Article  CAS  PubMed  Google Scholar 

  • Hampoelz B, Mackmull MT, Machado P et al (2016) Pre-assembled nuclear pores insert into the nuclear envelope during early development. Cell 166:664–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harel A, Zlotkin E, Nainudel-Epszteyn S et al (1989) Persistence of major nuclear envelope antigens in an envelope-like structure during mitosis in Drosophila melanogaster embryos. J Cell Sci 94(Pt 3):463–70

    CAS  PubMed  Google Scholar 

  • Hayashi Y (2000) The molecular genetics of recurring chromosome abnormalities in acute myeloid leukemia. Semin Hematol 37:368–80

    Article  CAS  PubMed  Google Scholar 

  • Hnisz D, Shrinivas K, Young RA et al (2017) A phase separation model for transcriptional control. Cell 169:13–23

    Article  CAS  PubMed  Google Scholar 

  • Hou C, Corces VG (2010) Nups take leave of the nuclear envelope to regulate transcription. Cell 140:306–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibarra A, Benner C, Tyagi S et al (2016) Nucleoporin-mediated regulation of cell identity genes. Genes Dev 30:2253–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii K, Arib G, Lin C et al (2002) Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109:551–62

    Article  CAS  PubMed  Google Scholar 

  • Jacinto FV, Benner C, Hetzer MW (2015) The nucleoporin Nup153 regulates embryonic stem cell pluripotency through gene silencing. Genes Dev 29:1224–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Wang S, Huang Y et al (2015) Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell 163:108–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jongens TA, Ackerman LD, Swedlow JR et al (1994) Germ cell-less encodes a cell type-specific nuclear pore-associated protein and functions early in the germ-cell specification pathway of Drosophila. Genes Dev 8:2123–36

    Article  CAS  PubMed  Google Scholar 

  • Jovicic A, Mertens J, Boeynaems S et al (2015) Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci 18:1226–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jovicic A, Paul 3rd JW, Gitler AD (2016) Nuclear transport dysfunction: a common theme in amyotrophic lateral sclerosis and frontotemporal dementia. J Neurochem 138(Suppl 1):134–44

    Article  CAS  PubMed  Google Scholar 

  • Kalverda B, Fornerod M (2010) Characterization of genome-nucleoporin interactions in Drosophila links chromatin insulators to the nuclear pore complex. Cell Cycle 9:4812–7

    Article  CAS  PubMed  Google Scholar 

  • Kalverda B, Pickersgill H, Shloma VV et al (2010) Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140:360–71

    Article  CAS  PubMed  Google Scholar 

  • Katsani KR, Irimia M, Karapiperis C et al (2014) Functional genomics evidence unearths new moonlighting roles of outer ring coat nucleoporins. Sci Rep, 4, 4655.

    Google Scholar 

  • Katsani KR, Karess RE, Dostatni N et al (2008) In vivo dynamics of Drosophila nuclear envelope components. Mol Biol Cell 19:3652–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehat I, Accornero F, Aronow BJ et al (2011) Modulation of chromatin position and gene expression by HDAC4 interaction with nucleoporins. J Cell Biol 193:21–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiger AA, Gigliotti S, Fuller MT (1999) Developmental genetics of the essential Drosophila nucleoporin nup154: allelic differences due to an outward-directed promoter in the P-element 3’ end. Genetics 153:799–812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiseleva E, Rutherford S, Cotter LM et al (2001) Steps of nuclear pore complex disassembly and reassembly during mitosis in early Drosophila embryos. J Cell Sci 114:3607–18

    CAS  PubMed  Google Scholar 

  • Knockenhauer KE, Schwartz TU (2016) The nuclear pore complex as a flexible and dynamic gate. Cell 164:1162–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohler A, Schneider M, Cabal GG et al (2008) Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export. Nat Cell Biol 10:707–15

    Article  PubMed  CAS  Google Scholar 

  • Kurshakova MM, Krasnov AN, Kopytova DV et al (2007) SAGA and a novel Drosophila export complex anchor efficient transcription and mRNA export to NPC. EMBO J 26:4956–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzin B, Tillib S, Sedkov Y et al (1994) The Drosophila trithorax gene encodes a chromosomal protein and directly regulates the region-specific homeotic gene fork head. Genes Dev 8:2478–90

    Article  CAS  PubMed  Google Scholar 

  • Kwon I, Xiang S, Kato M et al (2014) Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345:1139–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam KC, Muhlpfordt F, Vaquerizas JM et al (2012) The NSL complex regulates housekeeping genes in Drosophila. PLoS Genet 8:e1002736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KH, Zhang P, Kim HJ et al (2016) C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167:774–788. e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Franks TM, Marchetto MC et al (2013) Dynamic association of NUP98 with the human genome. PLoS Genet 9:e1003308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Light WH, Freaney J, Sood V et al (2013) A conserved role for human Nup98 in altering chromatin structure and promoting epigenetic transcriptional memory. PLoS Biol 11:e1001524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling SC, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79:416–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupu F, Alves A, Anderson K et al (2008) Nuclear pore composition regulates neural stem/progenitor cell differentiation in the mouse embryo. Dev Cell 14:831–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maehara K, Murata T, Aoyama N et al (2012) Genetic dissection of Nucleoporin 160 (Nup160), a gene involved in multiple phenotypes of reproductive isolation in Drosophila. Genes Genet Syst 87:99–106

    Article  CAS  PubMed  Google Scholar 

  • Mcgurk L, Berson A, Bonini NM (2015) Drosophila as an in vivo model for human neurodegenerative disease. Genetics 201:377–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendjan S, Akhtar A (2007) The right dose for every sex. Chromosoma 116:95–106

    Article  PubMed  Google Scholar 

  • Mendjan S, Taipale M, Kind J et al (2006) Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 21:811–23

    Article  CAS  PubMed  Google Scholar 

  • Mitchell S, Vargas J, Hoffmann A (2016) Signaling via the NFkappaB system. Wiley Interdiscip Rev Syst Biol Med 8:227–41

    Article  CAS  PubMed  Google Scholar 

  • Mondal BC, Shim J, Evans CJ et al (2014) Pvr expression regulators in equilibrium signal control and maintenance of Drosophila blood progenitors. Elife 3:e03626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oka M, Mura S, Yamada K et al (2016) Chromatin-prebound Crm1 recruits Nup98-HoxA9 fusion to induce aberrant expression of Hox cluster genes. Elife 5:e09540

    Article  PubMed  PubMed Central  Google Scholar 

  • Panda D, Pascual-Garcia P, Dunagin M et al (2014) Nup98 promotes antiviral gene expression to restrict RNA viral infection in Drosophila. Proc Natl Acad Sci U S A 111:E3890–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parrott BB, Chiang Y, Hudson A et al (2011). Nucleoporin98-96 function is required for transit amplification divisions in the germ line of Drosophila melanogaster. PLoS One 6:e25087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual-Garcia P, Debo B, Aleman JR et al (2017) Metazoan nuclear pores provide a scaffold for poised genes and mediate induced enhancer-promoter contacts. Mol Cell 66:63–76. e6

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Garcia P, Jeong J, Capelson M (2014). Nucleoporin Nup98 associates with Trx/MLL and NSL histone-modifying complexes and regulates Hox gene expression. Cell Rep 9:433–42

    Article  CAS  PubMed  Google Scholar 

  • Piccioni F, Zappavigna V, Verrotti AC (2005) A cup full of functions. RNA Biol 2:125–8

    Article  CAS  PubMed  Google Scholar 

  • Pombo A, Dillon N (2015) Three-dimensional genome architecture: players and mechanisms. Nat Rev Mol Cell Biol 16:245–57

    Article  CAS  PubMed  Google Scholar 

  • Presgraves DC (2007) Speciation genetics: epistasis, conflict and the origin of species. Curr Biol 17:R125–7

    Article  CAS  PubMed  Google Scholar 

  • Presgraves DC, Balagopalan L, Abmayr SM et al (2003). Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature 423:715–9

    Article  CAS  PubMed  Google Scholar 

  • Presgraves DC, Stephan W (2007) Pervasive adaptive evolution among interactors of the Drosophila hybrid inviability gene, Nup96. Mol Biol Evol 24:306–14

    Article  CAS  PubMed  Google Scholar 

  • Ptak C, Aitchison JD, Wozniak RW (2014). The multifunctional nuclear pore complex: a platform for controlling gene expression. Curr Opin Cell Biol 28:46–53

    Article  CAS  PubMed  Google Scholar 

  • Ptak C, Wozniak RW (2016) Nucleoporins and chromatin metabolism. Curr Opin Cell Biol 40:153–60

    Article  CAS  PubMed  Google Scholar 

  • Qi H, Rath U, Wang D et al (2004) Megator, an essential coiled-coil protein that localizes to the putative spindle matrix during mitosis in Drosophila. Mol Biol Cell 15:4854–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabut G, Doye V, Ellenberg J (2004) Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat Cell Biol 6:1114–21

    Article  CAS  PubMed  Google Scholar 

  • Raices M, D’Angelo MA (2012) Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat Rev Mol Cell Biol 13:687–99

    Article  CAS  PubMed  Google Scholar 

  • Raja SJ, Charapitsa I, Conrad T et al (2010) The nonspecific lethal complex is a transcriptional regulator in Drosophila. Mol Cell 38:827–41

    Article  CAS  PubMed  Google Scholar 

  • Rickels R, Hu D, Collings CK et al (2016) An evolutionary conserved epigenetic mark of polycomb response elements implemented by Trx/MLL/COMPASS. Mol Cell 63:318–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringrose L, Paro R (2007) Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134:223–32

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Navarro S, Fischer T, Luo MJ et al (2004) Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116:75–86

    Article  CAS  PubMed  Google Scholar 

  • Roth P, Xylourgidis N, Sabri N et al (2003) The Drosophila nucleoporin DNup88 localizes DNup214 and CRM1 on the nuclear envelope and attenuates NES-mediated nuclear export. J Cell Biol 163:701–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saj A, Arziman Z, Stempfle D et al (2010) A combined ex vivo and in vivo RNAi screen for notch regulators in Drosophila reveals an extensive notch interaction network. Dev Cell 18:862–76

    Article  CAS  PubMed  Google Scholar 

  • Sawamura K (2012) Chromatin evolution and molecular drive in speciation. Int J Evol Biol 2012:301894

    PubMed  Google Scholar 

  • Sawamura K, Maehara K, Mashino S et al (2010) Introgression of Drosophila simulans nuclear pore protein 160 in Drosophila melanogaster alone does not cause inviability but does cause female sterility. Genetics 186:669–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawamura K, Watanabe TK, Yamamoto MT (1993) Hybrid lethal systems in the Drosophila melanogaster species complex. Genetica 88:175–85

    Article  CAS  PubMed  Google Scholar 

  • Schuettengruber B, Chourrout D, Vervoort M et al (2007) Genome regulation by polycomb and trithorax proteins. Cell 128:735–45

    Article  CAS  PubMed  Google Scholar 

  • Schweizer N, Pawar N, Weiss M et al (2015) An organelle-exclusion envelope assists mitosis and underlies distinct molecular crowding in the spindle region. J Cell Biol 210:695–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senger S, Csokmay J, Akbar T et al (2011) The nucleoporin Seh1 forms a complex with Mio and serves an essential tissue-specific function in Drosophila oogenesis. Development 138:2133–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Jost D, Kind J et al (2014) Differential spatial and structural organization of the X chromosome underlies dosage compensation in C. elegans. Genes Dev 28:2591–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Sistla S, Pang JV, Wang CX et al (2007) Multiple conserved domains of the nucleoporin Nup124p and its orthologs Nup1p and Nup153 are critical for nuclear import and activity of the fission yeast Tf1 retrotransposon. Mol Biol Cell 18:3692–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sood V, Brickner JH (2014) Nuclear pore interactions with the genome. Curr Opin Genet Dev 25:43–9

    Article  CAS  PubMed  Google Scholar 

  • Tan-Wong SM, Wijayatilake HD, Proudfoot NJ (2009) Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev 23:2610–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang S, Presgraves DC (2009) Evolution of the Drosophila nuclear pore complex results in multiple hybrid incompatibilities. Science 323:779–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uv AE, Roth P, Xylourgidis N et al (2000) Members only encodes a Drosophila nucleoporin required for rel protein import and immune response activation. Genes Dev 14:1945–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van De Vosse DW, Wan Y, Lapetina DL et al (2013) A role for the nucleoporin Nup170p in chromatin structure and gene silencing. Cell 152:969–83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaquerizas JM, Suyama R, Kind J et al (2010) Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet 6:e1000846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang GG, Cai L, Pasillas MP et al (2007) NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol 9:804–12

    Article  CAS  PubMed  Google Scholar 

  • Woolcock KJ, Stunnenberg R, Gaidatzis D et al (2012) RNAi keeps Atf1-bound stress response genes in check at nuclear pores. Genes Dev 26:683–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Valerio DG, Eisold ME et al (2016) NUP98 fusion proteins interact with the NSL and MLL1 complexes to drive leukemogenesis. Cancer Cell 30:863–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Cherry S (2014) Viruses and antiviral immunity in Drosophila. Dev Comp Immunol 42:67–84

    Article  PubMed  CAS  Google Scholar 

  • Xylourgidis N, Roth P, Sabri N et al (2006) The nucleoporin Nup214 sequesters CRM1 at the nuclear rim and modulates NFkappaB activation in Drosophila. J Cell Sci 119:4409–19

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Corces VG (2012) Insulators, long-range interactions, and genome function. Curr Opin Genet Dev 22:86–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarbrough ML, Mata MA, Sakthivel R et al (2014) Viral subversion of nucleocytoplasmic trafficking. Traffic 15:127–40

    Article  CAS  PubMed  Google Scholar 

  • Zhan L, Hanson KA, Kim SH et al (2013) Identification of genetic modifiers of TDP-43 neurotoxicity in Drosophila. PLoS One 8:e57214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Donnelly CJ, Haeusler AR et al (2015) The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525:56–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Capelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuhn, T., Capelson, M. (2018). Nuclear Pore and Genome Organization and Gene Expression in Drosophila . In: D’Angelo, M. (eds) Nuclear Pore Complexes in Genome Organization, Function and Maintenance. Springer, Cham. https://doi.org/10.1007/978-3-319-71614-5_5

Download citation

Publish with us

Policies and ethics