Skip to main content

The Role of Traction in Early-Onset Scoliosis

  • Chapter
  • First Online:
Early Onset Scoliosis

Abstract

Halo-gravity traction (HGT) and intraoperative skull-femoral traction (IOT) are two adjuncts used in the surgical management of scoliosis. There are many perceived benefits and serious irreversible complications are rare. Although the indications have not fully been elucidated, HGT tends to be reserved for more severe, stiff, kyphoscoliotic curves. The use of IOT seems to be resurging and may potentially reduce the need to consider other techniques to improve curve correction, such as anterior release, and osteotomies. This chapter will illustrate the potential benefits of IOT in early-onset scoliosis, through a case report, followed by a review of the current literature on IOT and HGT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El-Hawary R, Chukwunyerenwa C. Update on evaluation and treatment of scoliosis. Pediatr Clin North Am. 2014;61:1223–41.

    Article  PubMed  Google Scholar 

  2. Cunin V. Early-onset scoliosis—current treatment. Orthop Traumatol Surg Res. 2015;101:S109–18.

    Article  CAS  PubMed  Google Scholar 

  3. El-Hawary R, Akbarnia BA. Early onset scoliosis—time for consensus. Spine Deform. 2015;3:105–6.

    Article  PubMed  Google Scholar 

  4. Yaszay B, Sponseller PD, Shah SA, Asghar J, Miyanji F, Samdani AF, Bartley C, Newton PO. Performing a definitive fusion in juvenile CP patients is a good surgical option. J Pediatr Orthop. 2016;37(8):e488–91. https://doi.org/10.1097/BPO.0000000000000793.

    Article  Google Scholar 

  5. Roberto RF, Lonstein JE, Winter RB, Denis F. Curve progression in Risser stage 0 or 1 patients after posterior spinal fusion for idiopathic scoliosis. J Pediatr Orthop. 1997;17:718–25.

    CAS  PubMed  Google Scholar 

  6. Sponseller PD, Jain A, Newton PO, Lonner BS, Shah SA, Shufflebarger H, Bastrom TP, Marks MC, Betz RR. Posterior spinal fusion with pedicle screws in patients with idiopathic scoliosis and open Triradiate cartilage: does deformity progression occur? J Pediatr Orthop. 2016;36:695–700.

    Article  PubMed  Google Scholar 

  7. Hamill CL, Bridwell KH, Lenke LG, Chapman MP, Baldus C, Blanke K. Posterior arthrodesis in the skeletally immature patient. Assessing the risk for crankshaft: is an open triradiate cartilage the answer? Spine. 1997;22:1343–51.

    Article  CAS  PubMed  Google Scholar 

  8. Sponseller PD, Betz R, Newton PO, et al. Differences in curve behavior after fusion in adolescent idiopathic scoliosis patients with open triradiate cartilages. Spine. 2009;34:827–31.

    Article  PubMed  Google Scholar 

  9. Hassanzadeh H, Gupta S, Jain A, El Dafrawy MH, Skolasky RL, Kebaish KM. Type of anchor at the proximal fusion level has a significant effect on the incidence of proximal junctional kyphosis and outcome in adults after long posterior spinal fusion. Spine Deform. 2013;1:299–305.

    Article  PubMed  Google Scholar 

  10. Helgeson MD, Shah SA, Newton PO, Clements DH, Betz RR, Marks MC, Bastrom T, Harms Study Group. Evaluation of proximal junctional kyphosis in adolescent idiopathic scoliosis following pedicle screw, hook, or hybrid instrumentation. Spine. 2010;35:177–81.

    Article  PubMed  Google Scholar 

  11. Wang JH, Daniels AH, Palumbo MA, Eberson CP. Cervical traction for the treatment of spinal injury and deformity. JBJS Rev. 2014;2:1.

    Article  Google Scholar 

  12. D’Astous JL, Sanders JO. Casting and traction treatment methods for scoliosis. Orthop Clin N Am. 2007;38:477–84.

    Article  Google Scholar 

  13. Garabekyan T, Hosseinzadeh P, Iwinski HJ, Muchow RD, Talwalkar VR, Walker J, Milbrandt TA. The results of preoperative halo-gravity traction in children with severe spinal deformity. J Pediatr Orthop B. 2014;23:1–5.

    Article  PubMed  Google Scholar 

  14. Bogunovic L, Lenke LG, Bridwell KH, Luhmann SJ. Preoperative halo-gravity traction for severe pediatric spinal deformity: complications, radiographic correction and changes in pulmonary function. Spine Deform. 2012;1:33–9.

    Article  Google Scholar 

  15. Park DK, Braaksma B, Hammerberg KW, Sturm P. The efficacy of preoperative halo-gravity traction in pediatric spinal deformity the effect of traction duration. J Spinal Disord Tech. 2013;26:146–54.

    Article  PubMed  Google Scholar 

  16. Sink EL, Karol LA, Sanders J, Birch JG, Johnston CE, Herring JA. Efficacy of perioperative halo-gravity traction in the treatment of severe scoliosis in children. J Pediatr Orthop. 2001;21:519–24.

    CAS  PubMed  Google Scholar 

  17. Neal KM, Siegall E. Strategies for surgical management of large, stiff spinal deformities in children. J Am Acad Orthop Surg. 2017;25:e70–8.

    Article  PubMed  Google Scholar 

  18. Yang C, Wang H, Zheng Z, Zhang Z, Wang J, Liu H, Kim YJ, Cho S. Halo-gravity traction in the treatment of severe spinal deformity: a systematic review and meta-analysis. Eur Spine J. 2016;9:486.

    Google Scholar 

  19. Pourtaheri S, Shah SA, Ditro CP, Holmes L, Mackenzie WG. Preoperative halo-gravity traction with and without thoracoscopic anterior release for skeletal dysplasia patients with severe kyphoscoliosis. J Child Orthop. 2017;10:135–42.

    Article  Google Scholar 

  20. D'Astous JL, Sanders JO. Casting and traction treatment methods for scoliosis. Orthop Clin North Am. 2007;38:477–84.

    Article  PubMed  Google Scholar 

  21. Mubarak SJ, Camp JF, Vuletich W, Wenger DR, Garfin SR. Halo application in the infant. J Pediatr Orthop. 1989;9:612–4.

    Article  CAS  PubMed  Google Scholar 

  22. Bono CM. The halo fixator. J Am Acad Orthop Surg. 2007;15:728–37.

    Article  PubMed  Google Scholar 

  23. Sponseller PD, Takenaga RK, Newton P, et al. The use of traction in the treatment of severe spinal deformity. Spine. 2008;33:2305–9.

    Article  PubMed  Google Scholar 

  24. Koptan W, ElMiligui Y. Three-staged correction of severe rigid idiopathic scoliosis using limited halo-gravity traction. Eur Spine J. 2011;21:1091–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Caubet JF, Emans JB. Halo-gravity traction versus surgical release before implantation of expandable spinal devices: a comparison of results and complications in early-onset spinal deformity. J Spinal Disord Tech. 2011;24:99–104.

    Article  PubMed  Google Scholar 

  26. LaMothe JM, Sayeg Al S, Parsons DL, Ferri-de-Barros F. The use of intraoperative traction in pediatric scoliosis surgery: a systematic review. Spine Deform. 2015;3:45–51.

    Article  CAS  PubMed  Google Scholar 

  27. Keeler KA, Lenke LG, Good CR, Bridwell KH, Sides B, Luhmann SJ. Spinal fusion for spastic neuromuscular scoliosis: is anterior releasing necessary when intraoperative halo-femoral traction is used? Spine. 2010;35:E427–33.

    Article  PubMed  Google Scholar 

  28. Takeshita K, Lenke LG, Bridwell KH, Kim YJ, Sides B, Hensley M. Analysis of patients with nonambulatory neuromuscular scoliosis surgically treated to the pelvis with intraoperative halo-femoral traction. Spine. 2006;31:2381–5.

    Article  PubMed  Google Scholar 

  29. Watanabe K, Lenke LG, Bridwell KH, Kim YJ, Hensley M, Koester L. Efficacy of perioperative halo-gravity traction for treatment of severe scoliosis (≥100°). J Orthop Sci. 2010;15:720–30.

    Article  PubMed  Google Scholar 

  30. el-Shaker M, Watts HG. Acute brachial plexus neuropathy secondary to halo-gravity traction in a patient with Ehlers-Danlos syndrome. Spine. 1991;16:385–6.

    Article  CAS  PubMed  Google Scholar 

  31. Han X, Sun W, Qiu Y, Xu L, Sha S, Shi B, Yan H, Liu Z, Zhu Z. Clinical study halo gravity traction is associated with reduced bone mineral density of patients with severe Kyphoscoliosis. Biomed Res Int. 2016;2016:8056273.

    PubMed  PubMed Central  Google Scholar 

  32. Ginsburg GM, Bassett GS. Hypoglossal nerve injury caused by halo-suspension traction. A case report. Spine. 1998;23:1490–3.

    Article  CAS  PubMed  Google Scholar 

  33. Lewis SJ, Gray R, Holmes LM, Strantzas S, Jhaveri S, Zaarour C, Magana S. Neurophysiological changes in deformity correction of adolescent idiopathic scoliosis with intraoperative skull-femoral traction. Spine. 2011;36:1627–38.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig P. Eberson MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orlik, B., Eberson, C.P. (2018). The Role of Traction in Early-Onset Scoliosis. In: El-Hawary, R., Eberson, C. (eds) Early Onset Scoliosis. Springer, Cham. https://doi.org/10.1007/978-3-319-71580-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71580-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71579-7

  • Online ISBN: 978-3-319-71580-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics