Multi-Scale Approach for Self-Assembly and Protein Folding

  • Oriol Vilanova
  • Valentino Bianco
  • Giancarlo Franzese


We develop a multi-scale approach to simulate hydrated nanobio systems under realistic conditions (e.g., nanoparticles and protein solutions at physiological conditions over time-scales up to hours). We combine atomistic simulations of water at bio-interfaces (e.g., proteins or membranes) and nano-interfaces (e.g., nanoparticles or graphene sheets) and coarse-grain models of hydration water for protein folding and protein design. We study protein self-assembly and crystallization, in bulk or under confinement, and the kinetics of protein adsorption onto nanoparticles, verifying our predictions in collaboration with several experimental groups. We try to find answers for fundamental questions (Why water is so important for life? Which properties make water unique for biological processes?) and applications (Can we design better drugs? Can we limit protein-aggregations causing Alzheimer? How to implement nanotheranostic?). Here we focus only on the two larger scales of our approach: (1) The coarse-grain description of hydrated proteins and protein folding at sub-nanometric length-scale and milliseconds-to-seconds time-scales, and (2) the coarse-grain modeling of protein self-assembly on nanoparticles at 10-to-100 nm length-scale and seconds-to-hours time-scales.



We are thankful to M. Bernabei, C. Calero, L. E. Coronas, F. Leoni, N. Pagès, and A. Zantop for helpful discussions. O.V. and G.F. acknowledge the support of Spanish MINECO grant FIS2012-31025 and FIS2015-66879-C2-2-P. I. C. acknowledges the support from the Austrian Science Fund (FWF) Grant No. 26253-N27. V.B. acknowledges the support of the FWF Grant No. 2150-N36 and P 26253-N27.


  1. 1.
    Levy Y, Onuchic JN. Water and proteins: a love-hate relationship. Proc Natl Acad Sci USA. 2004;101(10):3325–6.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Levy Y, Onuchic JN. Mechanisms of protein assembly: lessons from minimalist models. Acc Chem Res. 2006;39(2):135–42.PubMedCrossRefGoogle Scholar
  3. 3.
    Raschke TM. Water structure and interactions with protein surfaces. Curr Opin Struct Biol. 2006;16(2):152–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Zipp A, Kauzmann W. Pressure denaturation of metmyoglobin. Biochemistry 1973;12(21):4217–28.PubMedCrossRefGoogle Scholar
  5. 5.
    Privalov PL. Cold denaturation of proteins. Crit Rev Biochem Mol Biol. 1990;25(4):281–305.PubMedCrossRefGoogle Scholar
  6. 6.
    Hummer G, Garde S, García AE, Paulaitis ME, Pratt LR. The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc Natl Acad Sci. 1998;95(4):1552–5.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Meersman F, Smeller L, Heremans K. Pressure-assisted cold unfolding of proteins and its effects on the conformational stability compared to pressure and heat unfolding. High Pressure Res. 2000;19(1–6):263–8.CrossRefGoogle Scholar
  8. 8.
    Lassalle MW, Yamada H, Akasaka K. The pressure-temperature free energy-landscape of staphylococcal nuclease monitored by (1)H NMR. J Mol Biol. 2000;298(2):293–302.PubMedCrossRefGoogle Scholar
  9. 9.
    Smeller L. Pressure-temperature phase diagrams of biomolecules. Biochim Biophys Acta Protein Struct Mol Enzymol. 2002;1595(1–2):11–29.CrossRefGoogle Scholar
  10. 10.
    Herberhold H, Winter R. Temperature- and pressure-induced unfolding and refolding of ubiquitin: a static and kinetic Fourier transform infrared spectroscopy study. Biochemistry 2002;41(7):2396–401.PubMedCrossRefGoogle Scholar
  11. 11.
    Lesch H, Stadlbauer H, Friedrich J, Vanderkooi JM. Stability diagram and unfolding of a modified cytochrome c: what happens in the transformation regime? Biophys J. 2002;82(3):1644–53.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ravindra R, Winter R. On the temperature–pressure free-energy landscape of proteins. Chem Phys Chem. 2003;4(4):359–65.PubMedCrossRefGoogle Scholar
  13. 13.
    Meersman F, Dobson CM, Heremans K. Protein unfolding, amyloid fibril formation and configurational energy landscapes under high pressure conditions. Chem Soc Rev. 2006;35(10):908–17.PubMedCrossRefGoogle Scholar
  14. 14.
    Pastore A, Martin SR, Politou A, Kondapalli KC, Stemmler T, Temussi PA. Unbiased cold denaturation: low- and high-temperature unfolding of yeast Frataxin under physiological conditions. J Am Chem Soc. 2007;129(17):5374–5.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Wiedersich J, Köhler S, Skerra A, Friedrich J. Temperature and pressure dependence of protein stability: the engineered fluorescein-binding lipocalin FluA shows an elliptic phase diagram. Proc Natl Acad Sci USA. 2008;105(15):5756–61.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Maeno A, Matsuo H, Akasaka K. The pressure–temperature phase diagram of hen lysozyme at low pH. Biophysics 2009;5:1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Somkuti J, Mártonfalvi Z, Kellermayer MSZ, Smeller L. Different pressure–temperature behavior of the structured and unstructured regions of titin. Biochim. Biophys. Acta 2013;1834(1):112–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Somkuti J, Jain S, Ramachandran S, Smeller L. Folding-unfolding transitions of Rv3221c on the pressure-temperature plane. High Pressure Res. 2013;33(2):250–7.CrossRefGoogle Scholar
  19. 19.
    Nucci NV, Fuglestad B, Athanasoula EA, Wand AJ. Role of cavities and hydration in the pressure unfolding of T4 lysozyme. Proc Natl Acad Sci USA. 2014;111(38):13846–51.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Griko YV, Privalov PL, Sturtevant JM, Venyaminov SY. Cold denaturation of staphylococcal nuclease. Proc Natl Acad Sci. 1988;85(10):3343–7.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Goossens K, Smeller L, Frank J, Heremans K. Pressure-tuning the conformation of bovine pancreatic trypsin inhibitor studied by fourier-transform infrared spectroscopy. Eur J Biochem. 1996;236(1):254–62.PubMedCrossRefGoogle Scholar
  22. 22.
    Nash DP, Jonas J. Structure of the pressure-assisted cold denatured state of ubiquitin. Biochem Biophys Res Commun. 1997;238(2):289–91.PubMedCrossRefGoogle Scholar
  23. 23.
    Nash DP, Jonas J . Structure of pressure-assisted cold denatured lysozyme and comparison with lysozyme folding intermediates. Biochemistry 1997;36(47):14375–83.PubMedCrossRefGoogle Scholar
  24. 24.
    De Los Rios P, Caldarelli G. Putting proteins back into water. Phys Rev E. 2000;62(6):8449–52.CrossRefGoogle Scholar
  25. 25.
    Marqués MI, Borreguero JM, Stanley HE, Dokholyan NV. Possible mechanism for cold denaturation of proteins at high pressure. Phys Rev Lett. 2003;91(13):138103.PubMedCrossRefGoogle Scholar
  26. 26.
    Patel BA, Debenedetti PG, Stillinger FH, Rossky PJ. A water-explicit lattice model of heat-, cold-, and pressure-induced protein unfolding. Biophys J. 2007;93(12):4116–27.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Athawale MV, Goel G, Ghosh T, Truskett TM, Garde S. Effects of lengthscales and attractions on the collapse of hydrophobic polymers in water. Proc Natl Acad Sci USA. 2007;104(3):733–8.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Nettels D, Müller-Späth S, Küster F, Hofmann H, Haenni D, Rüegger S, Reymond L, Hoffmann A, Kubelka J, Heinz B, Gast K, Best RB, Schuler B. Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins. Proc Natl Acad Sci. 2009;106(49):20740–5.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Best RB, Mittal J. Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse. J Phys Chem B. 2010;114(46):14916–23.PubMedCrossRefGoogle Scholar
  30. 30.
    Jamadagni SN, Bosoy C, Garde S. Designing heteropolymers to fold into unique structures via water-mediated interactions. J Phys Chem B. 2010;114(42):13282–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Badasyan AV, Tonoyan SA, Mamasakhlisov YS, Giacometti A, Benight AS, Morozov VF. Competition for hydrogen-bond formation in the helix-coil transition and protein folding. Phys Rev E Stat Nonlin Soft Matter Phys. 2011;83(5 Pt 1):051903.PubMedCrossRefGoogle Scholar
  32. 32.
    Matysiak S, Debenedetti PG, Rossky PJ. Role of hydrophobic hydration in protein stability: a 3D water-explicit protein model exhibiting cold and heat denaturation. J Phys Chem B. 2012;116(28):8095–104.PubMedCrossRefGoogle Scholar
  33. 33.
    Bianco V, Iskrov S, Franzese G. Understanding the role of hydrogen bonds in water dynamics and protein stability. J Biol Phys. 2012;38(1):27–48.PubMedCrossRefGoogle Scholar
  34. 34.
    Bianco V, Franzese G. Contribution of water to pressure and cold denaturation of proteins. Phys Rev Lett. 2015;115(10):108101.PubMedCrossRefGoogle Scholar
  35. 35.
    Paschek D, García AE. Reversible temperature and pressure denaturation of a protein fragment: a replica exchange molecular dynamics simulation study. Phys Rev Lett. 2004;93(23):238105.PubMedCrossRefGoogle Scholar
  36. 36.
    Paschek D, Gnanakaran S, Garcia AE. Simulations of the pressure and temperature unfolding of an alpha-helical peptide. Proc Natl Acad Sci USA. 2005;102(19):6765–70.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Sumi T, Sekino H. Possible mechanism underlying high-pressure unfolding of proteins: formation of a short-period high-density hydration shell. Phys Chem Chem Phys. 2011;13(35):15829–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Coluzza I. A coarse-grained approach to protein design: learning from design to understand folding. PloS One 2011;6(7):e20853.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Dias CL. Unifying microscopic mechanism for pressure and cold denaturations of proteins. Phys Rev Lett. 2012;109(4):048104.PubMedCrossRefGoogle Scholar
  40. 40.
    Das P, Matysiak S. Direct characterization of hydrophobic hydration during cold and pressure denaturation. J Phys Chem B. 2012;116(18):5342–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Sarma R, Paul S. Effect of pressure on the solution structure and hydrogen bond properties of aqueous N-methylacetamide. Chem Phys. 2012;407:115–23.CrossRefGoogle Scholar
  42. 42.
    Franzese G, Bianco V. Water at biological and inorganic interfaces. Food Biophys. 2013;8(3):153–69.CrossRefGoogle Scholar
  43. 43.
    Abeln S, Vendruscolo M, Dobson CM, Frenkel D. A simple lattice model that captures protein folding, aggregation and amyloid formation. PloS One 2014;9(1):e85185.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Yang C, Jang S, Pak Y. A fully atomistic computer simulation study of cold denaturation of a β-hairpin. Nat Commun. 2014;5:5773.PubMedCrossRefGoogle Scholar
  45. 45.
    Roche J, Caro JA, Norberto DR, Barthe P, Roumestand C, Schlessman JL, Garcia AE, García-Moreno BE, Royer CA, Garc∖’ia AE, Garcia-Moreno BE, Royer CA. Cavities determine the pressure unfolding of proteins. Proc Natl Acad Sci USA. 2012;109(18):6945–50.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Nisius L, Grzesiek S. Key stabilizing elements of protein structure identified through pressure and temperature perturbation of its hydrogen bond network. Nat Chem. 2012;4(9):711–7.PubMedCrossRefGoogle Scholar
  47. 47.
    van Dijk E, Varilly P, Knowles TP, Frenkel D, Abeln S. Consistent treatment of hydrophobicity in protein lattice models accounts for cold denaturation. arXiv e-prints 2015;116(7):078101.Google Scholar
  48. 48.
    Larios E. Gruebele M. Protein stability at negative pressure. Methods (San Diego, Calif.) 2010;52(1):51–6.Google Scholar
  49. 49.
    Hatch HW, Stillinger FH, Debenedetti PG. Computational study of the stability of the miniprotein Trp-cage, the GB1 β-hairpin, and the AK16 peptide, under negative pressure. J Phys Chem B. 2014;118(28):7761–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Hawley SA. Reversible pressure–temperature denaturation of chymotrypsinogen. Biochemistry 1971;10(13):2436–42.PubMedCrossRefGoogle Scholar
  51. 51.
    Meersman F, Smeller L, Heremans K. Protein stability and dynamics in the pressure-temperature plane. Biochim Biophys Acta. 2006;1764(3):346–54.PubMedCrossRefGoogle Scholar
  52. 52.
    Stokely K, Mazza MG, Stanley HE, Franzese G. Effect of hydrogen bond cooperativity on the behavior of water. Proc Natl Acad Sci USA. 2010;107:1301–6.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Strekalova EG, Mazza MG, Stanley HE, Franzese G. Large decrease of fluctuations for supercooled water in hydrophobic nanoconfinement. Phys Rev Lett. 2011;106:145701.PubMedCrossRefGoogle Scholar
  54. 54.
    Franzese G, Bianco V, Iskrov S. Water at interface with proteins. Food Biophys. 2011;6:186–98. Scholar
  55. 55.
    Mazza MG, Stokely K, Pagnotta SE, Bruni F, Stanley HE, Franzese G. More than one dynamic crossover in protein hydration water. Proc Natl Acad Sci. 2011;108(50):19873–8.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Bianco V, Vilanova O, Franzese G. Polyamorphism and polymorphism of a confined water monolayer: liquid–liquid critical point, liquid–crystal and crystal–crystal phase transitions. In: Proceedings of perspectives and challenges in statistical physics and complex systems for the next decade: a conference in honor of Eugene Stanley and Liacir Lucen; 2013. p. 126–49.Google Scholar
  57. 57.
    de los Santos F, Franzese G. Understanding diffusion and density anomaly in a coarse-grained model for water confined between hydrophobic walls. J Phys Chem B. 2011;115:14311–20.Google Scholar
  58. 58.
    Bianco V, Franzese G. Critical behavior of a water monolayer under hydrophobic confinement. Sci Rep. 2014;4:4440.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Coronas LE, Bianco V, Zantop A, Franzese G. Liquid–liquid critical point in 3D many-body water model. arXiv e-prints, October 2016.Google Scholar
  60. 60.
    Corradini D, Gallo P. Liquid–liquid coexistence in NaCl aqueous solutions: a simulation study of concentration effects. J Phys Chem B. 2011;115(48):14161–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Hernández de la Peña L, Kusalik PG. Temperature dependence of quantum effects in liquid water. J Am Chem Soc. 2005;127(14):5246–51.PubMedCrossRefGoogle Scholar
  62. 62.
    Soper AK, Antonietta Ricci M. Structures of high-density and low-density water. Phys Rev Lett. 2000;84(13):2881–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Lau FK, Dill KA. A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 1989;22(10):3986–97.CrossRefGoogle Scholar
  64. 64.
    Caldarelli G, De Los Rios P. Cold and warm denaturation of proteins. J Biol Phys. 2001;27(2–3):229–41.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Dias CL, Ala-Nissila T, Karttunen M, Vattulainen I, Grant M. Microscopic mechanism for cold denaturation. Phys Rev Lett. 2008;100(11):118101–4.PubMedCrossRefGoogle Scholar
  66. 66.
    Petersen CL, Tielrooij K-J, Bakker HJ. Strong temperature dependence of water reorientation in hydrophobic hydration shells. J Chem Phys. 2009;130(21):214511.PubMedCrossRefGoogle Scholar
  67. 67.
    Sarupria S. Garde S. Quantifying water density fluctuations and compressibility of hydration shells of hydrophobic solutes and proteins. Phys Rev Lett. 2009;103(3):37803.CrossRefGoogle Scholar
  68. 68.
    Tarasevich YI. State and structure of water in vicinity of hydrophobic surfaces. Colloid J. 2011;73(2):257–66.CrossRefGoogle Scholar
  69. 69.
    Davis JG, Gierszal KP, Wang P, Ben-Amotz D. Water structural transformation at molecular hydrophobic interfaces. Nature 2012;491(7425):582–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Muller N. Search for a realistic view of hydrophobic effects. Acc Chem Res. 1990;23(1):23–8.CrossRefGoogle Scholar
  71. 71.
    Lum K, Chandler D, Weeks JD. Hydrophobicity at small and large length scales. J Phys Chem B. 1999;103(22):4570–7.CrossRefGoogle Scholar
  72. 72.
    Schwendel D, Hayashi T, Dahint R, Pertsin A, Grunze M, Steitz R, Schreiber F . Interaction of water with self-assembled monolayers: neutron reflectivity measurements of the water density in the interface region. Langmuir 2003;19(6):2284–93.CrossRefGoogle Scholar
  73. 73.
    Jensen TR, Østergaard Jensen M, Reitzel N, Balashev K, Peters GH, Kjaer K, Bjørnholm T. Water in contact with extended hydrophobic surfaces: direct evidence of weak dewetting. Phys Rev Lett. 2003;90(8):86101.CrossRefGoogle Scholar
  74. 74.
    Doshi DA, Watkins EB, Israelachvili JN, Majewski J. Reduced water density at hydrophobic surfaces: effect of dissolved gases. Proc Natl Acad Sci USA. 2005;102(27):9458–62.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Godawat R, Jamadagni SN, Garde S. Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations. Proc Natl Acad Sci USA. 2009;106(36):15119–24.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Ghosh T, García AE, Garde S. Molecular dynamics simulations of pressure effects on hydrophobic interactions. J Am Chem Soc. 2001;123(44):10997–1003.PubMedCrossRefGoogle Scholar
  77. 77.
    Dias CL, Chan HS. Pressure-dependent properties of elementary hydrophobic interactions: ramifications for activation properties of protein folding. J Phys Chem B. 2014;118(27):7488–509.PubMedCrossRefGoogle Scholar
  78. 78.
    Bianco V, Pagès Gelabert N, Coluzza I, Franzese G. How the stability of a folded protein depends on interfacial water properties and residue–residue interactions. arXiv e-prints, April 2017.Google Scholar
  79. 79.
    Frenkel D, Smit B. Understand molecular simulations. San Diego/London: Academic; 2002.Google Scholar
  80. 80.
    Habash M, Reid G. Microbial biofilms: their development and significance for medical device-related infections. J Clin Pharmacol. 1999;39(9):887–98.PubMedCrossRefGoogle Scholar
  81. 81.
    Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, Kelly PM, Åberg C, Mahon E, Dawson KA. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol. 2013;8(2):137–43.PubMedCrossRefGoogle Scholar
  82. 82.
    Ding H-M, Ma YQ. Design strategy of surface decoration for efficient delivery of nanoparticles by computer simulation. Sci Rep. 2016;6:26783.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    De Simone A, Spadaccini R, Temussi PA, Fraternali F. Toward the understanding of MNEI sweetness from hydration map surfaces. Biophys J. 2006;90(9):3052–61.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Puntes VF. Design and pharmacokinetical aspects for the use of inorganic nanoparticles in radiomedicine. Br J Radiol. 2016;89(1057):20150210.PubMedCrossRefGoogle Scholar
  85. 85.
    Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S. Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett. 2007;7(4):914–20.PubMedCrossRefGoogle Scholar
  86. 86.
    Dawson KA, Salvati A, Lynch I. Nanotoxicology: nanoparticles reconstruct lipids. Nat Nano. 2009;4(2):84–5.CrossRefGoogle Scholar
  87. 87.
    Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci. 2008;105(38):14265–70.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Pratap N, Casey A, Lynch I. Tenuta T, Dawson KA. Preparation, characterization and ecotoxicological evaluation of four environmentally relevant species of n- isopropylacrylamide and n-isopropylacrylamide-co-n-tert-butylacrylamide copolymer nanoparticles. Aquat Toxicol. 2009;92:146–54.Google Scholar
  89. 89.
    Rivera Gil P, Oberdörster G, Elder A, Puntes VF, Parak WJ. Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS Nano. 2010;4(10):5227–31.CrossRefGoogle Scholar
  90. 90.
    Corbo C, Molinaro R, Parodi A, Furman NET, Salvatore F, Tasciotti E. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine. 2016;11(1):81–100.PubMedCrossRefGoogle Scholar
  91. 91.
    Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA. The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci. 2007;134–135:167–74.PubMedCrossRefGoogle Scholar
  92. 92.
    Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA. 2007;104(7):2050–5.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lynch I, Salvati A, Dawson KA. Protein-nanoparticle interactions: what does the cell see? Nat Nanotechnol. 2009;4(9):546–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA. What the cell “sees” in bionanoscience. J Am Chem Soc. 2010;132(16):5761–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes VF. Time evolution of the nanoparticle protein corona. ACS Nano. 2010;4(7):3623–32.PubMedCrossRefGoogle Scholar
  96. 96.
    Dell’Orco D, Lundqvist M, Oslakovic C, Cedervall T, Linse S. Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS One 2010;5(6):e10949.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Milani S, Bombelli FB, Pitek AS, Dawson KA, Rädler J, Baldelli Bombelli F. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano. 2012;6(3):2532–41.PubMedCrossRefGoogle Scholar
  98. 98.
    Pitek AS, O’Connell D, Mahon E, Monopoli MP, Bombelli FB, Dawson KA. Transferrin coated nanoparticles: study of the bionano interface in human plasma. PLoS One. 2012;7(7):e40685.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012;7(12):779–86.PubMedCrossRefGoogle Scholar
  100. 100.
    Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan MB, Lynch I, Elia G, Dawson K. The evolution of the protein corona around nanoparticles: a test study. ACS Nano. 2011;5(9):7503–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Shapero K, Fenaroli F, Lynch I, Cottell DC, Salvati A, Dawson KA. Time and space resolved uptake study of silica nanoparticles by human cells. Mol BioSyst. 2011;7:371–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Salvati A, Åberg C, dos Santos T, Varela J, Pinto P, Lynch I, Dawson KA. Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: toward models of uptake kinetics. Nanomed Nanotechnol Biol Med. 2011;7(6):818–26.CrossRefGoogle Scholar
  103. 103.
    Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc. 2011;133(8):2525–34.PubMedCrossRefGoogle Scholar
  104. 104.
    Monopoli MP, Bombelli FB, Dawson KA. Nanobiotechnology: nanoparticle coronas take shape. Nat Nano. 2011;6(1):11–2CrossRefGoogle Scholar
  105. 105.
    Vilaseca P, Dawson KA, Franzese G. Understanding and modulating the competitive surface-adsorption of proteins through coarse-grained molecular dynamics simulations. Soft Matter. 2013;9(29):6978–85.CrossRefGoogle Scholar
  106. 106.
    Vilanova O. Bionanointeractions: interactions between nanoscopic systems and biological macromolecules in solution. PhD thesis, Universitat de Barcelona. 2018.Google Scholar
  107. 107.
    Vilanova O, Mittag JJ, Kelly PM, Milani S, Dawson KA, Rädler JO, Franzese G. Understanding the kinetics of protein–nanoparticle corona formation. ACS Nano. 2016;10(12):10842–50PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kumar P, Franzese G, Stanley HE. Dynamics and thermodynamics of water. J Phys Condens Matter. 2008;20(24):244114.CrossRefGoogle Scholar
  109. 109.
    Mazza MG , Stokely K, Strekalova EG, Stanley HE, Franzese G. Cluster Monte Carlo and numerical mean field analysis for the water liquid–liquid phase transition. Comput Phys Commun. 2009;180(4):497–502.CrossRefGoogle Scholar
  110. 110.
    Franzese G, Malescio G, Skibinsky A, Buldyrev SV, Stanley HE. Metastable liquid-liquid phase transition in a single-component system with only one crystal phase and no density anomaly. Phys Rev E. 2002;66(5):51206.CrossRefGoogle Scholar
  111. 111.
    Franzese G, Stanley HE. A theory for discriminating the mechanism responsible for the water density anomaly. Physica A. 2002;314(1–4):508–13.CrossRefGoogle Scholar
  112. 112.
    Franzese G, Stanley HE. Liquid–liquid critical point in a Hamiltonian model for water: analytic solution. J Phys Condens Matter. 2002;14(9):2201–9.CrossRefGoogle Scholar
  113. 113.
  114. 114.
    Franzese G. Differences between discontinuous and continuous soft-core attractive potentials: the appearance of density anomaly. J Mol Liq. 2007;136(3):267–73.CrossRefGoogle Scholar
  115. 115.
    Vilaseca P, Franzese G. Isotropic soft-core potentials with two characteristic length scales and anomalous behaviour. J Non-Cryst Solids. 2011;357(2):419–26.CrossRefGoogle Scholar
  116. 116.
    Vilanova O, Franzese G. Structural and dynamical properties of nanoconfined supercooled water., arXiv:1102.2864. 2011.Google Scholar
  117. 117.
    Bianco V, Franzese G, Dellago C, Coluzza I. Role of water in the selection of stable proteins at ambient and extreme thermodynamic conditions. Phys Rev X. 2017;7:021047.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Oriol Vilanova
    • 1
  • Valentino Bianco
    • 2
  • Giancarlo Franzese
    • 1
  1. 1.Secció de Física Estadística i Interdisciplinària, Departament de Física de la Matèria CondensadaFacultat de Física & Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de BarcelonaBarcelonaSpain
  2. 2.Computational Physics Group, Faculty of PhysicsUniversität WienViennaAustria

Personalised recommendations