Design of Polymeric Self-Assembling Materials and Nanocomposites in the Semi-dilute Density Regime: Multiscale Modeling

Chapter

Abstract

Creating novel building blocks, which allow for an easy and large scale fabrication of complex materials, is a challenge and a central goal of diverse scientific fields, ranging from Physics to Materials Science. Over the past years, much effort has been devoted into creating tunable building blocks that could self assemble and stabilize complex structures with particular features such as, for example, the diamond lattice, renowned for its important photonic properties (Maldovan and Thomas, Nat Mater 3:593, 2004). This has motivated materials scientists to undertake a large scale analysis of building blocks of various shapes (Damasceno et al., Science 337(6093):453–457, 2012) and diversified functionalizations (Glotzer and Solomon, Nat Mater 6(8):557–562, 2007; Torquato and Jiao, Nature 460(7257):876–879, 2009; Akcora et al., Nat Mater 8(4):354–359, 2009). Colloids functionalized with attractive or repulsive regions (patches) (Bianchi et al., Phys Chem Chem Phys 13(14):6397–6410, 2011; Ferrari et al., J Phys Condens Matter 27(23):234104, 2015; Bianchi et al., J Phys Condens Matter 27:230301, 2015; van Oostrum et al., J Phys Condens Matter 27(23):234105, 2015; Grünewald et al., Chem Mater. 27(13):4763–4771, 2015; Choueiri et al., Nature 538(7623):79–83, 2016) showed interesting self-assembly behavior, which can be tuned either by changing the shape of the patches or their relative orientation (Romano et al., J Chem Phys 132(18):184501, 2010). State of the art methods for the synthesis of such particles include lithography (Snyder et al., Langmuir 21(11):4813–4815, 2005; Yake et al., Langmuir 23(17): 9069–9075, 2007), microfluidics (Nie et al., J Am Chem Soc 128(29):9408–9412, 2006) or glancing angle deposition (Pawar and Kretzschmar, Langmuir 24(2):355–358, 2008; Pawar and Kretzschmar, Langmuir 25(16):9057–9063, 2009). However, shape-specific particle fabrication becomes more challenging when the particle has to be decorated with a large number of patches or if the shape and location of the patches has to be tuned and controlled with extremely high precision. Therefore, even though novel and interesting structures appear to be theoretically possible, they still remain hard to realize experimentally, given the precision required to achieve precise shape and relative orientation of the patches. Another extremely interesting class of functionalized particles is represented by DNA coated colloids, where colloids are covered with a brush of double stranded DNA terminating into a short segment of single stranded DNA. The terminal part of the brush is functionalized to attach only to complementary DNA strands. Such a high selectivity in the hybridization should, on the one hand, allow for an extremely precise tuning of the final structure that the colloid is designed to self assemble into but, on the other hand, it also induces a dynamical trapping into metastable structures. It has been shown that, in order to control and reduce the disordered region in the phase diagram of DNA coated colloids, it is necessary to re-introduce some entropy (Mognetti et al., Soft Matter 8(7):2213–2221, 2012; Angioletti-Uberti et al., Nat Mater 11(6):518–522, 2012).

Notes

Acknowledgements

B. C. acknowledges support from the Austrian Academy of Sciences (ÖAW) through her APART Fellowship No. 11723.

References

  1. 1.
    Maldovan M, Thomas EL. Diamond-structured photonic crystals. Nat Mater. 2004;3:593.PubMedCrossRefGoogle Scholar
  2. 2.
    Damasceno PF, Engel M, Glotzer SC. Predictive self-assembly of polyhedra into complex structures. Science. 2012;337(6093):453–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Glotzer SC, Solomon MJ. Anisotropy of building blocks and their assembly into complex structures. Nat Mater. 2007;6(8):557–62.PubMedCrossRefGoogle Scholar
  4. 4.
    Torquato S, Jiao Y. Dense packings of the Platonic and Archimedean solids. Nature. 2009;460(7257):876–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Akcora P, Liu H, Kumar SK, Moll J, Li Y, Benicewicz BC, Schadler LS, Acehan D, Panagiotopoulos AZ, Pryamitsyn V, et al. Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat Mater. 2009;8(4):354–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Bianchi E, Blaak R, Likos CN. Patchy colloids: state of the art and perspectives. Phys Chem Chem Phys. 2011;13(14):6397–410.PubMedCrossRefGoogle Scholar
  7. 7.
    Ferrari S, Bianchi E, Kalyuzhnyi YV, Kahl G. Inverse patchy colloids with small patches: fluid structure and dynamical slowing down. J Phys Condens Matter. 2015;27(23):234104.PubMedCrossRefGoogle Scholar
  8. 8.
    Bianchi E, Kahl G, Likos CN, Sciortino F. Patchy particles. J Phys Condens Matter. 2015;27:230301.PubMedCrossRefGoogle Scholar
  9. 9.
    van Oostrum PDJ, Hejazifar M, Niedermayer C, Reimhult E. Simple method for the synthesis of inverse patchy colloids. J Phys Condens Matter. 2015;27(23):234105.PubMedCrossRefGoogle Scholar
  10. 10.
    Grünewald TA, Lassenberger A, van Oostrum PDJ, Rennhofer H, Zirbs R, Capone B, Vonderhaid I, Amenitsch H, Lichtenegger HC, Reimhult E. Core–shell structure of monodisperse poly(ethylene glycol)-grafted iron oxide nanoparticles studied by small-angle X-ray scattering. Chem Mater. 2015;27(13):4763–71.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Choueiri RM, Galati E, Thérien-Aubin H, Klinkova A, Larin EM, Querejeta-Fernández A, Han L, Xin HL, Gang O, Zhulina EB, Rubinstein M, Kumacheva E. Surface patterning of nanoparticles with polymer patches. Nature. 2016;538(7623):79–83.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Romano F, Sanz E, Sciortino F. Phase diagram of a tetrahedral patchy particle model for different interaction ranges. J Chem Phys. 2010;132(18):184501.CrossRefGoogle Scholar
  13. 13.
    Snyder CE, Yake AM, Feick JD, Velegol D. Nanoscale functionalization and site-specific assembly of colloids by particle lithography. Langmuir. 2005;21(11):4813–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Yake AM, Snyder CE, Velegol D. Site-specific functionalization on individual colloids: size control, stability, and multilayers. Langmuir. 2007;23(17):9069–75.PubMedCrossRefGoogle Scholar
  15. 15.
    Nie Z, Li W, Seo M, Xu S, Kumacheva E. Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J Am Chem Soc. 2006;128(29):9408–12.PubMedCrossRefGoogle Scholar
  16. 16.
    Pawar AB, Kretzschmar I. Patchy particles by glancing angle deposition. Langmuir. 2008;24(2):355–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Pawar AB, Kretzschmar I. Multifunctional patchy particles by glancing angle deposition. Langmuir. 2009;25(16):9057–63.PubMedCrossRefGoogle Scholar
  18. 18.
    Mognetti BM, Leunissen ME, Frenkel D. Controlling the temperature sensitivity of DNA-mediated colloidal interactions through competing linkages. Soft Matter. 2012;8(7):2213–21.CrossRefGoogle Scholar
  19. 19.
    Angioletti-Uberti S, Mognetti BM, Frenkel D. Re-entrant melting as a design principle for DNA-coated colloids. Nat Mater. 2012;11(6):518–22.PubMedCrossRefGoogle Scholar
  20. 20.
    Mayer AC, Scully SR, Hardin BE, Rowell MW, McGehee MD. Polymer-based solar cells. Mater Today. 2007;10(11):28–33.CrossRefGoogle Scholar
  21. 21.
    de Gennes PG. Scaling concepts in polymer physics. Ithaca: Cornell University Press; 1979.Google Scholar
  22. 22.
    Flory PJ, Krigbaum WR. Statistical mechanics of dilute polymer solutions. II. J Chem Phys. 1950;18(8):1086–94.CrossRefGoogle Scholar
  23. 23.
    Flory PJ. Principles of polymer chemistry. Itacha: Cornell University Press; 1953.Google Scholar
  24. 24.
    Doi M, Edwards SF. The theory of polymer dynamics. Oxford: Oxford University Press; 1986.Google Scholar
  25. 25.
    Doi M. Introduction to polymer physics. Oxford: Clarendon Press; 1996.Google Scholar
  26. 26.
    des Cloizeaux J, Jannink G. Polymers in solution, their modelling and structure. Oxford: Oxford University Press; 1990.Google Scholar
  27. 27.
    Pelissetto A, Hansen J-P. Corrections to scaling and crossover from good-to θ-solvent regimes of interacting polymers. J Chem Phys. 2005;122(13):134904.PubMedCrossRefGoogle Scholar
  28. 28.
    Bolhuis PG, Louis AA, Hansen J-P, Meijer EJ. J Chem Phys. 2001;114(9):4296.CrossRefGoogle Scholar
  29. 29.
    Henderson RL. A uniqueness theorem for fluid pair correlation functions. Phys Lett A. 1974;49(3):197–8.CrossRefGoogle Scholar
  30. 30.
    Hansen J-P, Mc Donald IR. Theory of simple liquids. 3rd ed. Amsterdam: Academic; 2006.Google Scholar
  31. 31.
    Capone B, Coluzza I, LoVerso F, Likos CN, Blaak R. Telechelic star polymers as self-assembling units from the molecular to the macroscopic scale. Phys Rev Lett. 2012;109(23):238301.PubMedCrossRefGoogle Scholar
  32. 32.
    Pierleoni C, Capone B, Hansen J-P. J Chem Phys. 2007;127(17):171102.PubMedCrossRefGoogle Scholar
  33. 33.
    Grosberg AY, Khalatur PG, Khokhlov AR. Polymeric coils with excluded volume in dilute solution: the invalidity of the model of impenetrable spheres and the influence of excluded volume on the rates of diffusion-controlled intermacromolecular reactions. Makromol Chem Rapid. 1982;3(10):709–13.CrossRefGoogle Scholar
  34. 34.
    Dautenhahn J, Hall CK. Macromolecules. 1994;27:5399.CrossRefGoogle Scholar
  35. 35.
    Pelissetto A, Hansen J-P. An effective two-component description of colloid-polymer phase separation. Macromolecules. 2006;39(26):9571–80.CrossRefGoogle Scholar
  36. 36.
    Pierleoni C, Capone B, Hansen J-P. A soft effective segment representation of semidilute polymer solutions. J Chem Phys. 2007;127(17):171102.PubMedCrossRefGoogle Scholar
  37. 37.
    Capone B, Hansen JP, Coluzza I. Competing micellar and cylindrical phases in semi-dilute diblock copolymer solutions. Soft Matter. 2010;6:6075.CrossRefGoogle Scholar
  38. 38.
    Capone B, Coluzza I, Hansen J-P. A systematic coarse-graining strategy for semi-dilute copolymer solutions: from monomers to micelles. J Phys Condens Matter. 2011;23:194102.PubMedCrossRefGoogle Scholar
  39. 39.
    Coluzza I, Capone B, Hansen J-P. Rescaling of structural length scales for “soft effective segment” representations of polymers in good solvent. Soft Matter. 2011;7:5255.CrossRefGoogle Scholar
  40. 40.
    Ladanyi BM, Chandler D. New type of cluster theory for molecular fluids: interaction site cluster expansion. J Chem Phys. 1975;62(11):4308–24.CrossRefGoogle Scholar
  41. 41.
    Louis AA. Beware of density dependent pair potentials. J Phys Condens Matter. 2002;14(40):9187.CrossRefGoogle Scholar
  42. 42.
    Micheletti C, Marenduzzo D, Orlandini E. Polymers with spatial or topological constraints: theoretical and computational results. Phys Rep. 2011;504(1):1–73.CrossRefGoogle Scholar
  43. 43.
    Müller M, Wittmer JP, Cates ME. Topological effects in ring polymers: a computer simulation study. Phys Rev E. 1996;53(5):5063.CrossRefGoogle Scholar
  44. 44.
    Grosberg AY. Annealed lattice animal model and Flory theory for the melt of non-concatenated rings: towards the physics of crumpling. Soft Matter. 2014;10:560–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Takano A, Kushida Y, Ohta Y, Masuoka K, Matsushita Y. The second virial coefficients of highly-purified ring polystyrenes in cyclohexane. Polymer. 2009;50:1300.CrossRefGoogle Scholar
  46. 46.
    Narros A, Moreno AJ, Likos CN. Effects of knots on ring polymers in solvents of varying quality. Macromolecules. 2013;46:3654.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hirayama N, Tsurusaki K, Deguchi T. Linking probabilities of off-lattice self-avoiding polygons and the effects of excluded volume. J Phys A: Math Theor. 2009;42:05001.CrossRefGoogle Scholar
  48. 48.
    Bernabei M, Bacova P, Moreno AJ, Narros A, Likos CN. Fluids of semiflexible ring polymers: effective potentials and clustering. Soft Matter. 2013;9(4):1287–300.CrossRefGoogle Scholar
  49. 49.
    Rubinstein M, Colby RH. Polymer physics. Oxford: Oxford University Press; 2003.Google Scholar
  50. 50.
    Roovers J. The melt properties of ring polystyrenes. Macromolecules. 1985;18:1359.CrossRefGoogle Scholar
  51. 51.
    Roovers J. Viscoelastic properties of polybutadiene rings. Macromolecules. 1988;21(5):1517–21.CrossRefGoogle Scholar
  52. 52.
    McKenna GB, Hadziioannou G, Lutz P, Hild G, Strazielle C, Straupe C, Rempp P, Kovacs AJ. Dilute solution characterization of cyclic polystyrene molecules and their zero-shear viscosity in the melt. Macromolecules. 1987;20(3):498–512.CrossRefGoogle Scholar
  53. 53.
    Hodgson DF, Amis EJ. Dilute solution behavior of cyclic and linear polyelectrolytes. J Chem Phys. 1991;95:7653.CrossRefGoogle Scholar
  54. 54.
    Brown S, Szamel G. Structure and dynamics of ring polymers. J Chem Phys. 1998;108(12):4705–8.CrossRefGoogle Scholar
  55. 55.
    Brown S, Szamel G. Computer simulation study of the structure and dynamics of ring polymers. J Chem Phys. 1998;109(14):6184–92.CrossRefGoogle Scholar
  56. 56.
    Brown S, Lenczycki T, Szamel G. Influence of topological constraints on the statics and dynamics of ring polymers. Phys Rev E 2001;63(5):052801.CrossRefGoogle Scholar
  57. 57.
    Müller M, Wittmer JP, Cates ME. Topological effects in ring polymers. II. Influence of persistence length. Phys Rev E. 2000;61(4):4078.Google Scholar
  58. 58.
    Hur K, Jeong C, Winkler RG, Lacevic N, Gee RH, Yoon DY. Chain dynamics of ring and linear polyethylene melts from molecular dynamics simulations. Macromolecules. 2011;44(7):2311–5.CrossRefGoogle Scholar
  59. 59.
    Halverson JD, Lee WB, Grest GS, Grosberg AY, Kremer K. Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics. J Chem Phys. 2011;134(20):204905.PubMedCrossRefGoogle Scholar
  60. 60.
    Tsolou G, Stratikis N, Baig C, Stephanou PS, Mavrantzas VG. Melt structure and dynamics of unentangled polyethylene rings: rouse theory, atomistic molecular dynamics simulation, and comparison with the linear analogues. Macromolecules. 2010;43(24):10692–713.CrossRefGoogle Scholar
  61. 61.
    Kapnistos M, Lang M, Vlassopoulos D, Pyckhout-Hintzen W, Richter D, Cho D, Chang T, Rubinstein M. Unexpected power-law stress relaxation of entangled ring polymers. Nat Mater. 2008;7(12):997–1002.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Slimani MZ, Bacova P, Bernabei M, Narros A, Likos CN, Moreno AJ. Cluster glasses of semiflexible ring polymers. ACS Macro Lett. 2014;3(7):611–6.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Cates ME, Deutsch JM. Conjectures on the statistics of ring polymers. J Phys Fr. 1986;47(12):2121.CrossRefGoogle Scholar
  64. 64.
    Pakula T, Geyler S. Cooperative relaxations in condensed macromolecular systems. 3. Computer-simulated melts of cyclic polymers. Macromolecules. 1988;21(6):1665–70.CrossRefGoogle Scholar
  65. 65.
    Müller M, Wittmer JP, Barrat J-L. On two intrinsic length scales in polymer physics: topological constraints vs. entanglement length. Europhys Lett. 2000;52(4):406.Google Scholar
  66. 66.
    Hur K, Winkler RG, Yoon DY, et al. Comparison of ring and linear polyethylene from molecular dynamics simulations. Macromolecules. 2006;39(12):3975–7.CrossRefGoogle Scholar
  67. 67.
    Vettorel T, Grosberg AY, Kremer K. Statistics of polymer rings in the melt: a numerical simulation study. Phys Biol. 2009:6(2):025013.PubMedCrossRefGoogle Scholar
  68. 68.
    Suzuki J, Takano A, Deguchi T, Matsushita Y. Dimension of ring polymers in bulk studied by Monte-Carlo simulation and self-consistent theory. J Chem Phys. 2009;131(14):144902.PubMedCrossRefGoogle Scholar
  69. 69.
    Halverson JD, Lee WB, Grest GS, Grosberg AY, Kremer K. Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. I. Statics. J Chem Phys. 2011;134(20):204904.PubMedCrossRefGoogle Scholar
  70. 70.
    Sakaue T. Ring polymers in melts and solutions: scaling and crossover. Phys Rev Lett. 2011;106(16):167802.PubMedCrossRefGoogle Scholar
  71. 71.
    Sakaue T. Statistics and geometrical picture of ring polymer melts and solutions. Phys Rev E. 2012;85(2):021806.CrossRefGoogle Scholar
  72. 72.
    Everaers R, Sukumaran SK, Grest GS, Svaneborg C, Sivasubramanian A, Kremer K. Rheology and microscopic topology of entangled polymeric liquids. Science. 2004;303(5659):823–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Narros A, Moreno AJ, Likos CN. Influence of topology on effective potentials: coarse-graining ring polymers. Soft Matter. 2011;6:2435.CrossRefGoogle Scholar
  74. 74.
    Safran SA. Statistical thermodynamics of surfaces, interfaces and membranes. Reading: Addison Wesley; 1994.Google Scholar
  75. 75.
    Hamley IW. Block copolymers in solution. Chichester: Wiley; 2005.CrossRefGoogle Scholar
  76. 76.
    Leibler L. Theory of microphase separation in block copolymers. Macromolecules. 1980;13(6):1602–17.CrossRefGoogle Scholar
  77. 77.
    Matsen MW, Schick M. Stable and unstable phases of a diblock copolymer melt. Phys Rev Lett. 1994;72(16):2660.PubMedCrossRefGoogle Scholar
  78. 78.
    Ohta T, Kawasaki K. Equilibrium morphology of block copolymer melts. Macromolecules. 1986;19(10):2621–32.CrossRefGoogle Scholar
  79. 79.
    Fredrickson GH, Helfand E. Fluctuation effects in the theory of microphase separation in block copolymers. J Chem Phys. 1987;87(1):697–705.CrossRefGoogle Scholar
  80. 80.
    Zhulina EB, Adam M, LaRue I, Sheiko SS, Rubinstein M, et al. Diblock copolymer micelles in a dilute solution. Macromolecules. 2005;38(12):5330–51.CrossRefGoogle Scholar
  81. 81.
    Milchev A, Bhattacharya A, Binder K. Formation of block copolymer micelles in solution: a Monte Carlo study of chain length dependence. Macromolecules. 2001;34(6):1881–93.CrossRefGoogle Scholar
  82. 82.
    Termonia Y. Sphere-to-cylinder transition in dilute solutions of diblock copolymers. J Polym Sci B Polym Phys. 2002;40(9):890–5.CrossRefGoogle Scholar
  83. 83.
    Wijmans CM, Eiser E, Frenkel D. Simulation study of intra-and intermicellar ordering in triblock-copolymer systems. J Chem Phys. 2004:120(12):5839–48.PubMedCrossRefGoogle Scholar
  84. 84.
    Lodge TL, Bang J, Li Z, Hillmyer MA, Talmon Y. Strategies for controlling intra-and intermicellar packing in block copolymer solutions: illustrating the flexibility of the self-assembly toolbox. Faraday Discuss. 2004;128:1–12.CrossRefGoogle Scholar
  85. 85.
    Lodge TP, Pudil B, Hanley KJ. The full phase behavior for block copolymers in solvents of varying selectivity. Macromolecules. 2002;35(12):4707–17.CrossRefGoogle Scholar
  86. 86.
    Park MJ, Char K, Bang J, Lodge TP. Interplay between cubic and hexagonal phases in block copolymer solutions. Langmuir. 2005;21(4):1403–11.PubMedCrossRefGoogle Scholar
  87. 87.
    Addison CI, Hansen JP, Krakoviack V, Louis AA. Coarse-graining diblock copolymer solutions: a macromolecular version of the Widom–Rowlinson model. Mol Phys. 2005;103(21–23):3045–54.CrossRefGoogle Scholar
  88. 88.
    Bang J, Lodge TP. On the selection of FCC and BCC lattices in poly (styrene-b-isoprene) copolymer micelles. Macromol Res. 2008;16(1):51–6.CrossRefGoogle Scholar
  89. 89.
    McConnell GA, Gast AP. Melting of ordered arrays and shape transitions in highly concentrated diblock copolymer solutions. Macromolecules. 1997;30(3):435–44.CrossRefGoogle Scholar
  90. 90.
    Ziherl P, Kamien RD. Soap froths and crystal structures. Phys Rev Lett. 2000;85(16):3528.PubMedCrossRefGoogle Scholar
  91. 91.
    Molina JJ, Pierleoni C, Capone B, Hansen J-P, Saulo Santos de Oliveira I. Crystal stability of diblock copolymer micelles in solution. Mol Phys. 2009;107(4–6):535–48.CrossRefGoogle Scholar
  92. 92.
    Widom B. Some topics in theory of fluids. J Chem Phys. 1963;39(11):2808.CrossRefGoogle Scholar
  93. 93.
    Bates FS, Fredrickson GH. Block copolymer thermodynamics: theory and experiment. Annu Rev Phys Chem. 1990;41(1):525–57.PubMedCrossRefGoogle Scholar
  94. 94.
    Lo Verso F, Likos CN, Mayer C, Löwen H. Collapse of telechelic star polymers to watermelon structures. Phys Rev Lett. 2006;96:187802.CrossRefGoogle Scholar
  95. 95.
    Lo Verso F, Panagiotopoulos AZ, Likos CN. Aggregation phenomena in telechelic star polymer solutions. Phys Rev E. 2009;79:010401.CrossRefGoogle Scholar
  96. 96.
    Capone B, Coluzza I, Blaak R, Lo Verso F, Likos CN. Hierarchical self-assembly of telechelic star polymers: from soft patchy particles to gels and diamond crystals. J Phys. 2013;15(9):095002.Google Scholar
  97. 97.
    Rovigatti L, Capone B, Likos CN. Soft self-assembled nanoparticles with temperature-dependent properties. Nanoscale. 2016;8(6):3288–95.PubMedCrossRefGoogle Scholar
  98. 98.
    Kumar SK, Krishnamoorti R. Nanocomposites: structure, phase behavior, and properties. Annu Rev Chem Biomol Eng. 2010;1(1):37–58.PubMedCrossRefGoogle Scholar
  99. 99.
    Kumar SK, Benicewicz BC, Vaia RA, Winey KI. 50th anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules. 2017;50(3):714–31.CrossRefGoogle Scholar
  100. 100.
    Asakura S, Oosawa F. On interaction between two bodies immersed in a solution of macromolecules. J Chem Phys. 1954;22:1255–6.CrossRefGoogle Scholar
  101. 101.
    Le Coeur C, Teixeira J, Busch P, Longeville S. Compression of random coils due to macromolecular crowding: scaling effects. Phys Rev E. 2010;81:061914.CrossRefGoogle Scholar
  102. 102.
    Nusser K, Neueder S, Schneider GJ, Meyer M, Pyckhout-Hintzen W, Willner L, Radulescu A, Richter D. Conformations of SilicaPoly(ethylenepropylene) nanocomposites. Macromolecules. 2010;43(23):9837–47.CrossRefGoogle Scholar
  103. 103.
    Milling A, Biggs S. Direct measurement of the depletion force using an atomic force microscope. J Colloid Interface Sci. 1995;170(2):604–6.CrossRefGoogle Scholar
  104. 104.
    Rudhardt D, Bechinger C, Leiderer P. Direct measurement of depletion potentials in mixtures of colloids and nonionic polymers. Phys Rev Lett. 1998;81:1330–3.CrossRefGoogle Scholar
  105. 105.
    Hilitski F, Ward AR, Cajamarca L, Hagan MF, Grason GM, Dogic Z. Measuring cohesion between macromolecular filaments one pair at a time: depletion-induced microtubule bundling. Phys Rev Lett. 2015;114:138102.PubMedCrossRefGoogle Scholar
  106. 106.
    Hennequin Y, Evens M, Quezada Angulo CM, van Duijneveldt JS. Miscibility of small colloidal spheres with large polymers in good solvent. J Chem Phys. 2005;123(5):054906.PubMedCrossRefGoogle Scholar
  107. 107.
    Fuchs M, Schweizer KS. Structure and thermodynamics of colloid-polymer mixtures: a macromolecular approach. Europhys Lett. 2000;51(6):621.CrossRefGoogle Scholar
  108. 108.
    Fuchs M, Schweizer KS. Structure of colloid-polymer suspensions. J Phys Condens Matter. 2002;14(12):R239.CrossRefGoogle Scholar
  109. 109.
    Schmidt M, Denton AR, Brader JM. Fluid demixing in colloidpolymer mixtures: influence of polymer interactions. J Chem Phys. 2003;118(3):1541–9.CrossRefGoogle Scholar
  110. 110.
    Denton AR, Schmidt M. Colloid-induced polymer compression. J Phys Condens Matter. 2002;14(46):12051.CrossRefGoogle Scholar
  111. 111.
    Paricaud P, Varga S, Jackson G. Study of the demixing transition in model athermal mixtures of colloids and flexible self-excluding polymers using the thermodynamic perturbation theory of Wertheim. J Chem Phys. 2003;118(18):8525–36.CrossRefGoogle Scholar
  112. 112.
    Lekkerkerker HNW, Poon WC-K, Pusey PN, Stroobants A, Warren PB. Phase behaviour of colloid + polymer mixtures. Europhys. Lett. 1992;20(6):559.CrossRefGoogle Scholar
  113. 113.
    Lekkerkerker HNW. Osmotic equilibrium treatment of the phase separation in colloidal dispersions containing non-adsorbing polymer molecules. Colloids Surf. 1990;51:419–26.CrossRefGoogle Scholar
  114. 114.
    Fleer GJ, Tuinier R. Analytical phase diagram for colloid-polymer mixtures. Phys Rev E. 2007;76:041802.CrossRefGoogle Scholar
  115. 115.
    Fleer GJ, Tuinier R. Analytical phase diagrams for colloids and non-adsorbing polymer. Adv Colloid Interf Sci. 2008;143(1–2):1–47.CrossRefGoogle Scholar
  116. 116.
    Chou C-Y, Vo TTM, Panagiotopoulos AZ, Robert M. Computer simulations of phase transitions of bulk and confined colloid-polymer systems. Physica A. 2006;369(2):275–90.CrossRefGoogle Scholar
  117. 117.
    Mahynski NA, Lafitte T, Panagiotopoulos AZ. Pressure and density scaling for colloid-polymer systems in the protein limit. Phys Rev E. 2012;85(5):051402.CrossRefGoogle Scholar
  118. 118.
    Mahynski NA, Panagiotopoulos AZ. Phase behavior of athermal colloid-star polymer mixtures. J Chem Phys. 2013;139(2):024907.PubMedCrossRefGoogle Scholar
  119. 119.
    Dijkstra M, Brader JM, Evans R. Phase behaviour and structure of model colloid-polymer mixtures. J Phys Condens Matter. 1999;11(50):10079.CrossRefGoogle Scholar
  120. 120.
    Louis AA, Bolhuis PG, Hansen JP, Meijer EJ. Can polymer coils be modeled as “Soft Colloids”? Phys Rev Lett. 2000;85:2522–25.PubMedCrossRefGoogle Scholar
  121. 121.
    Bolhuis PG, Louis AA, Hansen JP, Meijer EJ. Accurate effective pair potentials for polymer solutions. J Chem Phys. 2001;114(9):4296–311.CrossRefGoogle Scholar
  122. 122.
    Bolhuis PG, Louis AA, Hansen J-P. Influence of polymer-excluded volume on the phase-behavior of colloid-polymer mixtures. Phys Rev Lett. 2002;89:128302.PubMedCrossRefGoogle Scholar
  123. 123.
    Bolhuis PG, Meijer EJ, Louis AA. Colloid-polymer mixtures in the protein limit. Phys Rev Lett. 2003;90:068304.PubMedCrossRefGoogle Scholar
  124. 124.
    Lim WK, Denton AR. Depletion-induced forces and crowding in polymer-nanoparticle mixtures: role of polymer shape fluctuations and penetrability. J Chem Phys. 2016;144(2):024904.PubMedCrossRefGoogle Scholar
  125. 125.
    D’Adamo G, Pelissetto A, Pierleoni C. Phase diagram and structure of mixtures of large colloids and linear polymers under good-solvent conditions. Macromolecules. 2016;49(14):5266–80.CrossRefGoogle Scholar
  126. 126.
    von Ferber C, Jusufi A,Watzlawek M, Likos CN, Löwen H. Polydisperse star polymer solutions. Phys Rev E. 2000;62:6949–56.CrossRefGoogle Scholar
  127. 127.
    Jusufi A, Dzubiella J, Likos CN, von Ferber C, Lwen H. Effective interactions between star polymers and colloidal particles. J Phys Condens Matter. 2001;13(28):6177.CrossRefGoogle Scholar
  128. 128.
    Likos CN. Soft matter with soft particles. Soft Matter. 2006;2:478–98.CrossRefGoogle Scholar
  129. 129.
    Mayer C, Zaccarelli E, Stiakakis E, Likos CN, Sciortino F, Munam A, Gauthier M, Hadjichristidis N, Iatrou H, Tartaglia P, et al. Asymmetric caging in soft colloidal mixtures. Nat Mater. 2008;7(10):780–4.PubMedCrossRefGoogle Scholar
  130. 130.
    Grest GS, Fetters LJ, Huang JS, Richter D. Star polymers: experiment, theory, and simulation. Adv Chem Phys. 1996;94:67.Google Scholar
  131. 131.
    Likos CN, Löwen H, Watzlawek M, Abbas B, Jucknischke O, Allgaier J, Richter D. Star polymers viewed as ultrasoft colloidal particles. Phys Rev Lett. 1998;80:4450.CrossRefGoogle Scholar
  132. 132.
    Likos CN. Effective interactions in Soft Condensed Matter Physics. Phys Rep. 2001;348:267–439.CrossRefGoogle Scholar
  133. 133.
    Marzi D, Likos CN, Capone B. Coarse graining of star-polymer colloid nanocomposites. J Chem Phys. 2012;137(1):014902.PubMedCrossRefGoogle Scholar
  134. 134.
    Truzzolillo D, Marzi D, Marakis J, Capone B, Camargo M, Munam A, Moingeon F, Gauthier M, Likos CN, Vlassopoulos D. Glassy states in asymmetric mixtures of soft and hard colloids. Phys Rev Lett. 2013;111:208301.PubMedCrossRefGoogle Scholar
  135. 135.
    Marzi D, Capone B, Marakis J, Merola MC, Truzzolillo D, Cipelletti L, Moingeon F, Gauthier M, Vlassopoulos D, Likos CN, Camargo M. Depletion, melting and reentrant solidification in mixtures of soft and hard colloids. Soft Matter. 2015;11:8296.PubMedCrossRefGoogle Scholar
  136. 136.
    Dzubiella J, Jusufi A, Likos CN, von Ferber C, Löwen H, Stellbrink J, Allgaier J, Richter D, Schofield AB, Smith PA, Poon WCK, Pusey PN. Phase separation in star polymer-colloid mixtures. Phys Rev E. 2001;64:010401.CrossRefGoogle Scholar
  137. 137.
    Camargo M, Likos CN. Phase separation in star-linear polymer mixtures. J Chem Phys. 2009;130:204904.PubMedCrossRefGoogle Scholar
  138. 138.
    Camargo M, Likos CN. Unusual features of depletion interactions in soft polymer-based colloids mixed with linear homopolymers. Phys Rev Lett. 2010;104:078301.PubMedCrossRefGoogle Scholar
  139. 139.
    Stiakakis E, Vlassopoulos D, Likos CN, Roovers J, Meier G. Polymer-mediated melting in ultrasoft colloidal gels. Phys Rev Lett. 2002;89:208302.PubMedCrossRefGoogle Scholar
  140. 140.
    Stiakakis E, Petekidis G, Vlassopoulos D, Likos CN, Iatrou H, Hadjichristidis N, Roovers J. Depletion and cluster formation in soft colloid - polymer mixtures. Europhys Lett. 2005;72:664–70.CrossRefGoogle Scholar
  141. 141.
    Lonetti B, Camargo M, Stellbrink J, Likos CN, Zaccarelli E, Willner L, Lindner P, Richter D. Ultrasoft colloid-polymer mixtures: structure and phase diagram. Phys Rev Lett. 2011;106:228301.PubMedCrossRefGoogle Scholar
  142. 142.
    Truzzolillo D, Vlassopoulos D, Gauthier M. Osmotic interactions, rheology, and arrested phase separation of star-linear polymer mixtures. Macromolecules. 2011;44:5043.CrossRefGoogle Scholar
  143. 143.
    Wilk A, Huißmann S, Stiakakis E, Kohlbrecher J, Vlassopoulos D, Likos CN, Meier G, Dhont JKG, Petekidis G, Vavrin R. Osmotic shrinkage in star/linear polymer mixtures. Eur Phys J E. 2010;32:127–34.PubMedCrossRefGoogle Scholar
  144. 144.
    Locatelli E, Capone B, Likos CN. Multiblob coarse-graining for mixtures of long polymers and soft colloids. J Chem Phys. 2016;145(17):174901.PubMedCrossRefGoogle Scholar
  145. 145.
    Pierleoni C, Capone B, Hansen JP. A soft effective segment representation of semidiluite polymer solutions. J Chem Phys. 2007;127:171102.PubMedCrossRefGoogle Scholar
  146. 146.
    Mladek BM, Frenkel D. Pair interactions between complex mesoscopic particles from Widom particle-insertion method. Soft Matter. 2011;7:1450–5.CrossRefGoogle Scholar
  147. 147.
    Daoud M, Cotton JP. Star shaped polymers: a model for the conformation and its concentration dependence. J Phys. 1982;43:531.CrossRefGoogle Scholar
  148. 148.
    Sear RP. Entropy-driven phase separation in mixtures of small colloidal particles and semidilute polymers. Phys Rev E. 1997;56:4463.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Dipartimento di ScienzeUniversità degli Studi “Roma Tre”RomaItaly
  2. 2.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations