Skip to main content

Biomechanical Analysis of the Damage in the Pelvic Floor Muscles During Childbirth

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 29))

Abstract

The vaginal birth is the leading cause of pelvic floor muscle injuries compromising its function, which can lead to pelvic organ prolapse, urinary incontinence, and other pelvic disorders. These conditions affect many women’s quality of life. As such, biomechanical models emerge to analyze the impact of pregnancy and childbirth in the biomechanics of the pelvic floor, and determine features that potentially contribute to complications during vaginal delivery. Computer models allow structural hypotheses to be analyzed, such as the influence of the shape of the fetal head and its position at delivery, the consequence of specific obstetrical procedures, among others. Damage analysis is especially important to understand the pathophysiology of the associated dysfunctions. The continuous developments in imaging techniques, and the increased computing power, make possible for these frameworks to be clinically valuable, with customized computer models and subject-specific mechanical properties, both in useful time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wilson L, Brown JS, Shind GP et al (2001) Annual direct cost of urinary incontinence. Obstet Gynecol 98(3):398–406. https://doi.org/10.1016/S0029-7844(01)01464-8

    Google Scholar 

  2. Goldberg RP (2007) Effects of pregnancy and childbirth on the pelvic floor. In: Culligan PJ, Goldberg RP (eds) Urogynecology in primary care. Springer, London, pp 21–33

    Chapter  Google Scholar 

  3. Bortolini MAT, Drutz HP, Lovatsis D et al (2010) Vaginal delivery and pelvic floor dysfunction: current evidence and implications for future research. Int Urogynecol J 21(8):1025–1030. https://doi.org/10.1007/s00192-010-1146-9

    Article  Google Scholar 

  4. Baracho SM, Barbosa da Silva L, Baracho E et al (2012) Pelvic floor muscle strength predicts stress urinary incontinence in primiparous women after vaginal delivery. Int Urogynecol J 23:899–906. https://doi.org/10.1007/s00192-012-1681-7

    Article  Google Scholar 

  5. Valsky DV, Lipschuetz M, Bord A et al (2009) Fetal head circumference and length of second stage of labor are risk factors for levator ani muscle injury, diagnosed by 3-dimensional transperineal ultrasound in primiparous women. Am J Obstet Gynecol 201(1):91.e1–91.e7. https://doi.org/10.1016/j.ajog.2009.03.028

  6. Liu F, Xu L, Ying T et al (2014) Three-dimensional ultrasound appearance of pelvic floor in nulliparous women and postpartum women one week after their first delivery. Int J Med Sci 11(3):234–239. https://doi.org/10.7150/ijms.7384

    Article  Google Scholar 

  7. DeLancey JOL, Kearney R, Chou Q et al (2003) The appearance of levator ani muscle abnormalities in magnetic resonance images after vaginal delivery. Obstet Gynecol 101(1):46–53. https://doi.org/10.1016/S0029-7844(02)02465-1

    Google Scholar 

  8. van Delft K, Thakar R, Sultan A et al (2014) Levator ani muscle avulsion during childbirth: a risk prediction model. BJOG 121(9):1155–1163. https://doi.org/10.1111/1471-0528.12676

    Article  Google Scholar 

  9. FIGO Safe Motherhood and Newborn Health (SMNH) Committee (2012) Management of the second stage of labor. Int J Gynaecol Obstet 119:111–116. https://doi.org/10.1016/j.ijgo.2012.08.002

  10. Braekken IH, Majida M, Engh ME et al (2014) Are pelvic floor muscle thickness and size of levator hiatus associated with pelvic floor muscle strength, endurance and vaginal resting pressure in women with pelvic organ prolapse stages I-III? A cross sectional 3D ultrasound study. Neurourol Urodyn 33(1):115–120. https://doi.org/10.1002/nau.22384

    Article  Google Scholar 

  11. Handa VL, Blomquist JL, McDermott KC et al (2012) Pelvic floor disorders after vaginal birth: effect of episiotomy, perineal laceration, and operative birth. Obstet Gynecol 119(2 Pt1):233–239. https://doi.org/10.1097/AOG.0b013e318240df4f

  12. Oliveira DA, Parente MPL, Calvo B et al (2016) Numerical simulation of the damage evolution in the pelvic floor muscles during childbirth. J Biomech 49(4):594–601. https://doi.org/10.1016/j.jbiomech.2016.01.014

    Article  Google Scholar 

  13. Albrich S, Laterza R, Skala C et al (2012) Impact of mode of delivery on levator morphology: a prospective observational study with three-dimensional ultrasound early in the postpartum period. BJOG 119(1):51–61. https://doi.org/10.1111/j.1471-0528.2011.03152.x

    Article  Google Scholar 

  14. Rahn DD, Ruff MD, Brown SA et al (2008) Biomechanical properties of the vaginal wall: effect of pregnancy, elastic fiber deficiency, and pelvic organ prolapse. Am J Obstet Gynecol 198(5):590.e1–590.e6. https://doi.org/10.1016/j.ajog.2008.02.022

  15. Lien K-C, Mooney B, DeLancey JOL et al (2004) Levator ani muscle stretch induced by simulated vaginal birth. Obstet Gynecol 103(1):31–40. https://doi.org/10.1097/01.AOG.0000109207.22354.65

    Article  Google Scholar 

  16. Zong W, Jallah ZC, Stein SE et al (2010) Repetitive mechanical stretch increases extracellular collagenase activity in vaginal fibroblasts. Female Pelvic Med Reconstr Surg 16(5):257–262. https://doi.org/10.1097/SPV.0b013e3181ed30d2

    Article  Google Scholar 

  17. Dietz HP, Lanzarone V (2005) Levator trauma after vaginal delivery. Obstet Gynecol 106(4):707–712. https://doi.org/10.1097/01.AOG.0000178779.62181.01

    Article  Google Scholar 

  18. Chan SSC, Cheung RYK, Yiu AK et al (2012) Prevalence of levator ani muscle injury in Chinese women after first delivery. Ultrasound Obstet Gynecol 39(6):704–709. https://doi.org/10.1002/uog.10132

    Article  Google Scholar 

  19. Hoyte L, Damaser MS, Warfield SK et al (2008) Quantity and distribution of levator ani stretch during simulated vaginal childbirth. Am J Obstet Gynecol 199(2):198.e1–198.e5. https://doi.org/10.1016/j.ajog.2008.04.027

  20. Oliphant SS, Nygaard IE, Zong W et al (2014) Maternal adaptations in preparation for parturition predict uncomplicated spontaneous delivery outcome. Am J Obstet Gynecol 211(6):630.e1–630.e7. https://doi.org/10.1016/j.ajog.2014.06.021

  21. Parente MPL, Natal Jorge RM, Mascarenhas T et al (2008) Deformation of the pelvic floor muscles during a vaginal delivery. Int Urogynecol J Pelvic Floor Dysfunct 19(1):65–71. https://doi.org/10.1007/s00192-007-0388-7

    Article  Google Scholar 

  22. Buttin R, Zara F, Shariat B et al (2013) Biomechanical simulation of the fetal descent without imposed theoretical trajectory. Comput Methods Programs Biomed 111(2):389–401. https://doi.org/10.1016/j.cmpb.2013.04.005

    Article  Google Scholar 

  23. Silva MET, Oliveira DA, Roza TH et al (2015) Study on the influence of the fetus head molding on the biomechanical behavior of the pelvic floor muscles, during vaginal delivery. J Biomech 48(9):1600–1605. https://doi.org/10.1016/j.jbiomech.2015.02.032

    Article  Google Scholar 

  24. Oliveira DA, Parente MPL, Calvo B et al (2016) A biomechanical analysis on the impact of episiotomy during childbirth. Biomech Model Mechanobiol 15(6):1523–1534. https://doi.org/10.1007/s10237-016-0781-6

    Article  Google Scholar 

  25. Li X, Kruger JA, Nash MP et al (2011) Anisotropic effects of the levator ani muscle during childbirth. Biomech Model Mechanobiol 10(4):485–494. https://doi.org/10.1007/s10237-010-0249-z

    Article  Google Scholar 

  26. Jing D, Ashton-Miller JA, DeLancey JOL (2012) A subject-specific anisotropic visco-hyperelastic finite element model of female pelvic floor stress and strain during the second stage of labor. J Biomech 45(3):455–460. https://doi.org/10.1016/j.jbiomech.2011.12.002

    Article  Google Scholar 

  27. Berardi M, Martinez-Romero O, Elias-Zuniga A et al (2014) Levator ani deformation during the second stage of labour. Proc Inst Mech Eng H 228(5):501–508. https://doi.org/10.1177/0954411914533678

    Article  Google Scholar 

  28. Yan X, Kruger JA, Nielsen PMF et al (2015) Effects of fetal head shape variation on the second stage of labour. J Biomech 48(9):1–7. https://doi.org/10.1016/j.jbiomech.2015.02.062

    Article  Google Scholar 

  29. Li X, Kruger JA, Nash MP et al (2010) Effects of fetal head motion on pelvic floor mechanics. Computational biomechanics for medicine. Springer, New York, pp 129–137

    Chapter  Google Scholar 

  30. Zijta FM, Froeling M, van der Paardt MP et al (2011) Feasibility of diffusion tensor imaging (DTI) with fibre tractography of the normal female pelvic floor. Eur Radiol 21(6):1243–1249. https://doi.org/10.1007/s00330-010-2044-8

    Article  Google Scholar 

  31. Li X, Kruger JA, Nash MP et al (2010) Effects of nonlinear muscle elasticity on pelvic floor mechanics during vaginal childbirth. J Biomech Eng 132(11):111010. https://doi.org/10.1115/1.4002558

    Article  Google Scholar 

  32. Silva MET, Brandão S, Parente MPL et al (2016) Establishing the biomechanical properties of the pelvic soft tissues through an inverse finite element analysis using magnetic resonance imaging. Proc Inst Mech Eng H 230(4):298–309. https://doi.org/10.1177/0954411916630571

  33. Sigrist R, Liau J, Kaffas A et al (2017) Ultrasound elastography: review of techniques and clinical applications. Theranostics 7(5):1303–1329. https://doi.org/10.7150/thno.18650

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dulce Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oliveira, D., Parente, M., Mascarenhas, T., Natal Jorge, R. (2018). Biomechanical Analysis of the Damage in the Pelvic Floor Muscles During Childbirth. In: Brandão, S., Da Roza, T., Ramos, I., Mascarenhas, T. (eds) Women's Health and Biomechanics. Lecture Notes in Computational Vision and Biomechanics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-71574-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71574-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71573-5

  • Online ISBN: 978-3-319-71574-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics