Skip to main content

Stress Distribution Near the Seismic Gap Between Wenchuan and Lushan Earthquakes

  • Chapter
  • First Online:
Earthquakes and Multi-hazards Around the Pacific Rim, Vol. I

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

The Wenchuan M S 8.0 earthquake and Lushan M S 7.0 earthquake unilaterally fractured northeastward and southwestward, respectively, along the Longmenshan fault belt. The aftershock areas of the two earthquakes were separated by a gap with a length of nearly 60 km. We have determined the focal mechanisms of 471 earthquakes with magnitude M ≥ 3 from Jan 2008 to July 2014 near the seismic gap using a full waveform inversion method. Normal, thrust and strike-slip focal mechanisms can be found in northern segment. But in a significant contrast, focal mechanisms of the earthquakes in the southern segment are dominated by thrust faulting. Based on the determined source parameters, we further apply a damped linear inversion method to derive the regional stress field. The southern segment is characterized by an obvious thrust faulting stress regime with a nearly horizontal maximum compression that orients in SE–NW direction. The stress environment in the northern segment is a lot more complicated. The maximum compressional stresses appear to rotate around the ‘‘asperity’’ near west of the Dujiangyan city. Stress field also shows strong variation with time and depth. Before 2009, the seismic activities are more concentrated on the Pengxian–Guanxian fault and Yingxiu–Beichuan fault with dominant strike-slip faulting and normal faulting, while after 2009, the seismic activities are dominated by thrust faulting from north to south, while the activities are more concentrated on the Wenchuan–Maoxian fault in northern segment and Pengxian–Guanxian fault in southern segment. The maximum compressional stresses vary in different depths from north to south, thus may imply the decoupled movement in shallow and in depth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bai, D. H., Unsworth, M. J., Meju, M. A., Ma, X. B., Teng, J. W., Kong, X. R., et al. (2010). Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geoscience, 3, 358–362. doi: https://doi.org/10.1038/NGEO830.

  • Chen, J. H., Liu, Q. Y., Li, S. C., Guo, B., Li, Y., Wang, J., et al. (2009). Seismotectonic study by relocation of the Wenchuan MS 8.0 earthquake sequence. China Journal Geophysics, 52(2), 390–397.

    Google Scholar 

  • Chen, Y. T., Yang, Z. X., Zhang, Y., & Liu, C. (2013). From 2008 Wenchuan earthquake to 2013 Lushan earthquake. Sci. China Earth Sci., 43(6), 1064–1072. (in Chinese).

    Google Scholar 

  • Fang, L. H., Wu, J. P., Wang, W. L., Du, W. K., Su, J. R., Wang, C. Z., et al. (2015). Aftershock observation and analysis of the 2013 MS7.0 Lushan earthquake. Seismological Research Letters, 86(4), 1135–1142.

    Google Scholar 

  • Gan, W. J., Zhang, P. Z., Shen, Z. K., Niu, Z. J., Wang, M., Wang, Y. G., et al. (2007). Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research: Solid Earth, 112, B08416.

    Google Scholar 

  • Gao, Y., Wang, Q., Zhao, B., & Shi, Y. T. (2014). A rupture blank zone in middle south part of Longmenshan faults: effect after Lushan Ms 7.0 earthquake of 20, April 2013 in Sichuan, China. Science China Earth Sciences, 57(9), 2036–2044.

    Google Scholar 

  • Han, L. B., Zeng, X. F., Jiang, C. S., Ni, S. D., Zhang, H. J., & Long, F. (2014). Focal mechanism of the 2013 MW 6.6 Lushan, China earthquake and high-resolution aftershock relocations. Seismological Research Letters, 85(1), 8–14.

    Google Scholar 

  • Hardebeck, J. L., & A. J. Michael (2004). Stress orientations at intermediate angles to the San Andreas fault, California, Journal of Geophysical Research, 109, no B11303. doi: https://doi.org/10.1029/2004JB003239.

  • Hardebeck, J. L., & A. J. Michael (2006). Damped regional-scale stress inversions: methodology and examples for southern California and the Coalinga aftershock sequence, Journal of Geophysical Research, 111, no. B11310. doi: https://doi.org/10.1029/2005JB004144.

  • Herrmann, R. B. (2014). Computer programs in seismology, Version 3.30, http://www.eas.slu.edu/eqc/eqccps.html (last accessed Dec 2015).

  • Herrmann, R. B., Malagnini, L., & Munafo`, I. (2011). Regional Moment Tensors of the 2009 L’Aquila Earthquake Sequence. Bulletin of the Seismological Society of America, 101(3), 975–993.

    Google Scholar 

  • Huang, R. Q., Wang, Z., Pei, S. P., & Wang, Y. S. (2009). Crustal ductile flow and its contribution to tectonic stress in Southwest China. Tectonophysics, 473, 476–489.

    Google Scholar 

  • Langston, C. A. (1979). Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J. Geophy. Res., 84(B9), 4749–4762.

    Google Scholar 

  • Li, Z. W., Tian, B. F., Liu, S., & Yang, J. S. (2013). Asperity of the 2013 Lushan earthquake in the eastern margin of Tibetan Plateau from seismic tomography and aftershock relocation. Geophysical Journal International, 195, 2016–2022. doi: https://doi.org/10.1093/gji/ggt370.

  • Liang, C. T., & Song, X. D. (2004). Tomographic inversion of Pn travel times in China. Journal Geophysical Research, 109, B11304. doi: https://doi.org/10.1029/2003JB002789.

  • Liu, M., Luo, G., & Wang, H. (2014). The 2013 Lushan earthquake in China tests hazard assessments. Seismological Research Letters, 85(1), 40–43.

    Google Scholar 

  • Lü, J., Su, J. R., Jin, Y. K., Long, F., Yang, Y. Q., Zhang, Z. W., et al. (2008). Discussion on relocation and seismo-tectonics of the MS 8.0 Wenchuan earthquake sequences. Seismology and Geology, 30(4), 917–925.

    Google Scholar 

  • Luo, Y., Zhao, L., Zeng, X. F., & Gao, Y. (2015). Focal mechanisms of the Lushan earthquake sequence and spatial variation of the stress field. Science China Earth Science, 58(7), 1148–1158. doi: https://doi.org/10.1007/s11430-014-5017-y.

  • Martínez-Garzón, P., Kwiatek, G., Ickrath, M., & Bohnhoff, M. (2014). MSATSI: A MATLABpackage for stress inversion combining solid classic methodology, a new simplified userhandling and a visualization tool. Seismological Research Letters, 85(4), 896–904. doi: https://doi.org/10.1785/0220130189.

  • Pei, S. P., H. J. Zhang, J. R. Su, and Z. X. Cui (2014). Ductile gap between the Wenchuan and Lushan earthquakes revealed from the two-dimensional Pg seismic tomography. Sci. Rep. 4, 6489. doi: https://doi.org/10.1038/srep06489.

  • Wang, Z., J. R. Su, C. X. Liu, and X. L. Cai (2015). New insights into the generation of the 2013 Lushan Earthquake (Ms 7.0), China. J. Geophys. Res. 120, 3507–3526, doi: https://doi.org/10.1002/2014JB011692.

  • Wang, H., Liu, M., Shen, X. H., & Liu, J. (2010). Balance of seismic moment in the Songpan-Ganze region, eastern Tibet: implications for the 2008 Geat Wenchuan earthquake. Tectonophysics, 491, 154–164.

    Google Scholar 

  • Wessel, P., and W. H. F. Smith (1995). New version of Generic Mapping Tools released, Eos Trans. AGU 76, p. 329.

    Google Scholar 

  • Xu, Z. H. (2001). A present-day tectonic stress map for eastern Asia region. Acta Seismologica Sinica, 23, 492–501. (in Chinese).

    Google Scholar 

  • Xu, Y., Herrmann, R. B., & Koper, D. K. (2010). Source parameters of regional small-to-moderate earthquakes in the Yunnan- Sichuan Region of China. Bulletin of the Seismological Society of America, 100, 2518–2531. doi: https://doi.org/10.1785/0120090195.

  • Xu, Z. Q., Ji, S. C., Li, H. B., Hou, L. W., Fu, X. F., & Cai, Z. H. (2008a). Uplift of the Longmenshan range and the Wenchuan earthquake. Episodes, 31, 291–301.

    Google Scholar 

  • Xu, X. W., Wen, X. Z., Han, Z. J., Chen, G. H., Li, C. Y., Zheng, W. J., et al. (2013). Lushan Ms 7.0 earthquake: a blind reservefault earthquake. Chinese Science Bulletin, 58(20), 1887–1893. doi: https://doi.org/10.1007/s11434-013-5999-4. (in Chinese).

  • Xu, J. R., Zhao, Z. X., & Ishikawa, Yuzo. (2008b). Regional characteristics of crustal stress field and tectonic motions and around Chinese mainland. Chinese Journal of Geophysics, 51(3), 770–781.

    Google Scholar 

  • Yang, Y. H., Liang, C. T., & Su, J. R. (2015). Focal mechanism inversion based on regional model inverted from receiver function and its application to the Lushan earthquake sequence. Chinese Journal of Geophysics, 58(10), 3583–3600. doi: https://doi.org/10.6038/cjg20151013. (in Chinese).

  • Yi, G.X., Long, F., and Zhang, Z.W. (2012). Spatial and temporal variation of focal mechanisms for aftershocks of the 2008 Ms 80 Wenchuan earthquake. Chin. J. Geophys. 55, no. 4, 1213-1227, doi: https://doi.org/10.6038/j.issn.0001-5733.2012.04.017.

  • Zhang, P. Z., Shen, Z. K., Wang, M., Gan, W. J., Bürgmann, R., Molnar, P., et al. (2004). Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9), 809–812.

    Google Scholar 

  • Zhao, L., Luo, Y., Liu, T. Y., & Luo, Y. J. (2013). Earthquake Focal Mechanisms in Yunnan and their Inference on the Regional Stress Field. Bulletin of the Seismological Society of America, 103(4), 2498–2507. doi: https://doi.org/10.1785/0120120309.

  • Zhao, G. Z., Unsworth, M. J., Zhan, Y., Wang, L. F., Chen, X. B., Jones, A. G., et al. (2012). Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 earthquake epicentral area from magnetotelluric data. Geology, 40(12), 1139–1142. doi: https://doi.org/10.1130/G33703.1.

  • Zhu, A. L., Xu, X. W., Diao, G. L., Su, J. R., Feng, X. D., Sun, Q., et al. (2008). Relocation of the MS 8.0 Wenchuan earthquake sequence in part: preliminary seismotectonic analysis. Seismology and Geology, 30(3), 759–767.

    Google Scholar 

  • Zhu, J. S., Zhao, J. M., Jiang, X. T., Fan, J., & Liang, C. T. (2012). Crustal flow beneath the eastern margin of the Tibetan plateau. Earthquake Science, 25, 469–483. doi: https://doi.org/10.1007/s11589-012-0871-1.

  • Zoback, M. L. (1992). First- and second-order patterns of stress in the lithosphere: the world stress map project. Journal of Geophysical Research, 97(B8), 11703–11728.

    Google Scholar 

Download references

Acknowledgments

We appreciate Mian Liu and one anonymous reviewer for their constructive comments and suggestions that have helped to improve this paper. This work was partially supported by National Natural Science Foundation of China (41340009), Sichuan Science and Technology Support Plan (2015RZ0032, 2015SZ0224) and the Creative Team Plan of Chengdu University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuntao Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, Y., Liang, C., Li, Z., Su, J., Zhou, L., He, F. (2018). Stress Distribution Near the Seismic Gap Between Wenchuan and Lushan Earthquakes. In: Zhang, Y., Goebel, T., Peng, Z., Williams, C., Yoder, M., Rundle, J. (eds) Earthquakes and Multi-hazards Around the Pacific Rim, Vol. I. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-71565-0_5

Download citation

Publish with us

Policies and ethics