Skip to main content

The Roles of miR-25 and Its Targeted Genes in Human Cancer

  • Chapter
  • First Online:
  • 737 Accesses

Abstract

Since of their discovery in mammalians, microRNAs (miRNAs) have been associated to almost every physiological function within cells, tissues and organs. miRNAs are small non-coding RNAs that regulate gene expression by targeting messenger RNAs for translational repression or, at lesser extent, mRNAs degradation. Within the several functions controlled by miRNAs there are the control of cell proliferation, apoptosis, differentiation, cell migration, autophagy and metabolism. Thus, the uncontrolled expression of miRNAs has been associated with cancer onset, progression and cancer spreading into metastasis. miRNAs up- or down-regulation has been linked to oncogenic and tumor-suppressive roles in all type of cancers. Altered expression of many miRNAs has been reported many human malignant tumors, participating in various cellular processes accordingly with its broad range of potential mRNAs target. Here, we want to briefly discuss the mechanisms underlying miRNA-mediated tumorigenesis in different human cancers, presenting, as an example, the oncogenic and tumor-suppressive function of miR-25. Moreover, we summarize the possible future as a potential diagnostic and prognostic parameter as well as therapeutic target in clinical applications and the main techniques to study miRNAs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15:321–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861–74.

    Article  CAS  PubMed  Google Scholar 

  3. Mendell JT. MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle. 2005;4:1179–84.

    Article  CAS  PubMed  Google Scholar 

  4. Tiscornia G, Izpisua Belmonte JC. MicroRNAs in embryonic stem cell function and fate. Genes Dev. 2010;24:2732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ruan K, Fang X, Ouyang G. MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett. 2009;285:116–26.

    Article  CAS  PubMed  Google Scholar 

  6. Voorhoeve PM. MicroRNAs: oncogenes, tumor suppressors or master regulators of cancer heterogeneity? Biochim Biophys Acta. 2010;1805:72–86.

    CAS  PubMed  Google Scholar 

  7. Petrocca F, Vecchione A, Croce CM. Emerging role of mir-106b-25/mir-17-92 clusters in the control of transforming growth factor β signaling. Cancer Res. 2008;68(20):8191–4.

    Article  CAS  PubMed  Google Scholar 

  8. O’Donnel KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-MYC-regulated microRNAs modulate E2F expression. Nature. 2005;435:839–43.

    Article  Google Scholar 

  9. Lu D, Davis MPA, Abreu-Goodger C, Wang W, Campos LS, Siede J, Vigorito E, Skarnes WC, Dunham I, Enright AJ, Liu P. mir-25 regulates Wwp2 and Fbxw7 and promotes reprogramming of mouse fibroblasts cells to IPSCs. PLoS One. 2012;7(8):e40938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. HM X, Liao B, Zhang QJ, Wang BB, Li H, Zhong XM, Sheng HZ, Zhao YX, Zhao YM, Jin Y. Wwp2, an E3 ubiquitin ligase that targets transcription factor Oct-4 for ubiquitination. J Biol Chem. 2004;279:23495–503.

    Article  Google Scholar 

  11. Welcker M, Clurman BE. FBW7 ubiquitin ligase: a tumor suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer. 2008;8:83–93.

    Article  CAS  PubMed  Google Scholar 

  12. Liu N, Li H, Li S, Shen M, Xiao N, Chen Y, Wang Y, Wang W, Wang R, Wang Q, Sun J, Wang P. The Fbw7/hCDC4 tumor suppressor targets pro-proliferative factor KLF5 for ubiquitination and degradation through multiple phosphodegron motifs. J Biol Chem. 2010;285(24):18858–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumar M, Lu Z, Takwi AAL, Chen W, Callander NS, Ramos KS, Young KH, Li Y. Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene. 2011;30(7):843–53.

    Article  CAS  PubMed  Google Scholar 

  14. Suh SS, Yoo JY, Nuovo GJ, Jeon YJ, Kim S, Lee TJ, Kim T, Bakàcs A, Alder H, Kaur B, Aqeilan RI, Pichiorri F, Croce CM. MicroRNAs/TP53 feedback circuitry in glioblastoma multiforme. Proc Natl Acad Sci U S A. 2012;109(14):5316–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Markopoulos GS, Roupakia E, Tokamani M, Vartholomatos G, Tzavaras T, Hatziapostolou M, Fackelmayer FO, Sandaltzopoulos R, Polytarchou C, Kolettas E. Senescence-associated microRNAs target cell cycle regulatory genes in normal human lung fibroblasts. Exp Gerontol. 2017;96:110–22.

    Article  CAS  PubMed  Google Scholar 

  16. Vasa-Nicotera M, Chen H, Tucci P, Yang AL, Saintigny G, Menghini R, Mahe C, Agostini M, Knight RA, Melino G, Federici M. miR-146a is modulated in human endothelial cell with aging. Atherosclerosis. 2011;217:326–30.

    Article  CAS  PubMed  Google Scholar 

  17. le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, Anile C, Maira G, Mercatelli N, Ciafre SA, Farace MG, Agami R. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J. 2007;26:3699–708.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A, Taccioli C, Pichiorri F, Alder H, Secchiero P, Gasparini P, Gonelli A, Costinean S, Acunzo M, Condorelli G, Croce CM. miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell. 2009;16:498–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 2005;334:1351–8.

    Article  CAS  PubMed  Google Scholar 

  20. He XH, Zhu W, Yuan P, Jiang S, Li D, Zhang HW, Liu MF. miR-155 downregulates ErbB2 and suppresses ErbB2-induced malignant transformation of breast epithelial cells. Oncogene. 2016;35:6015–25.

    Article  CAS  PubMed  Google Scholar 

  21. Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011;91:827–87.

    Article  CAS  PubMed  Google Scholar 

  22. Dong P, Karaayvaz M, Jia N, Kaneuchi M, Hamada J, Watari H, Sudo S, Ju J, Sakuragi N. Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene. 2013;32:3286–95.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu G, Wang Y, Mijiti M, Wang Z, Wu PF, Jiafu D. Upregulation of miR-130b enhances stem cell-like phenotype in glioblastoma by inactivating the hippo signaling pathway. Biochem Biophys Res Commun. 2015;465:194–9.

    Article  CAS  PubMed  Google Scholar 

  24. Yu T, Cao R, Li S, Fu M, Ren L, Chen W, Zhu H, Zhan Q, Shi R. MiR-130b plays an oncogenic role by repressing PTEN expression in esophageal squamous cell carcinoma cells. BMC Cancer. 2015;15:29.

    Article  PubMed  PubMed Central  Google Scholar 

  25. DeSantis C, Ma J, Bryan L, Jemal A. Breast cancer statistics, 2013. CA Cancer J Clin. 2014;61:52–62.

    Article  Google Scholar 

  26. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  27. Wong PM, Puente C, Ganley IG, Jiang X. The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy. 2013;9:124–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ye L, Gho WM, Chan FL, Chen S, Leung LK. Dietary administration of the licorice flavonoid isoliquiritigenin deters the growth of MCF-7 cells overexpressing aromatase. Int J Cancer. 2009;124:1028–36.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Z, Wang N, Liu P, Chen Q, Situ H, Xie T, Zhang J, Peng C, Lin Y, Chen J. MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin. Oncotarget. 2014;5(16):7013–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Szakàcs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5:219–34.

    Article  PubMed  Google Scholar 

  31. Feng S, Pan W, Jin Y, Zheng J. MIR-25 promotes ovarian cancer proliferation and motility by targeting LATS2. Tumor Biol. 2014;35:12339–44.

    Article  CAS  Google Scholar 

  32. Visser S, Yang X. LATS turor suppressor: a new governor of cellular homeostasis. Cell Cycle. 2010;9:3892–903.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang H, Zuo Z, Lu X, Wang L, Wang H, Zhu Z. MIR-25 regulates apoptosis by targeting Bim in human ovarian cancer. Oncol Rep. 2012;27(2):594–8.

    CAS  PubMed  Google Scholar 

  34. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics. CA Cancer J Clin. 2014;64(1):9–29.

    Article  PubMed  Google Scholar 

  35. Graham DY. Helicobacter pylori update: gastric cancer, reliable therapy, and possible benefits. Gastroenterology. 2015;148:719–31.e713.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sung H, Yang HH, Hu N, Su H, Taylor PR, Hyland PL. Functional annotation of high-quality SNP biomarkers of gastric cancer susceptibility: the Yin Yang of PSCA rs2294008. Gut. 2015;65(2):361–4.

    Article  PubMed  Google Scholar 

  37. Zhao H, Wang Y, Yang L, Jiang R, Li W. mir-25 promotes gastric cancer cell growth and motility by targeting RECK. Mol Cell Biochem. 2014;385:207–13.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang M, Wang X, Li W, Cui Y. miR-107 and miR-25 simultaneously target LATS2 and regulate proliferation and invasion of gastric adenocarcinoma (GAC) cells. Biochem Biophys Res Commun. 2015;460(3):806–12.

    Article  CAS  PubMed  Google Scholar 

  39. Li BS, Zuo QF, Zhao YL, Xiao B, Zhuang Y, Mao XH, Wu C, Yang SM, Zeng H, Zou QM, Guo G. MicroRNA-25 promotes gastric cancer migration, invasion and proliferation by directly targeting transducer of ERBB2, 1 and correlates with poor survival. Oncogene. 2015;34(20):2556–65.

    Article  CAS  PubMed  Google Scholar 

  40. Gong J, Cui Z, Li L, Ma Q, Wang Q, Gao Y, Sun H. MicroRNA-25 promotes gastric cancer proliferation, invasion, and migration by directly targeting F-box and WD-40 Domain Protein 7, FBXW7. Tumor Biol. 2015;36(10):7831–40.

    Article  CAS  Google Scholar 

  41. Clark JC, Thomas DM, Choong PF, Dass CR. RECK a newly discovered inhibitor of metastasis with prognostic significance in multiple forms of cancer. Cancer Metastasis Rev. 2007;26(3-4):675–83.

    Article  CAS  PubMed  Google Scholar 

  42. Li Y, Pei J, Xia H, Ke H, Wang H, Tao W. Lats2, a putative tumor suppressor, inhibits G1/S transition. Oncogene. 2003;22(28):4398–405.

    Article  CAS  PubMed  Google Scholar 

  43. Ke H, Pei J, Ni Z, Xia H, Qi H, Woods T, Kelekar A, Tao W. Putative tumor suppressor Lats2 induces apoptosis through downregulation of Bcl-2 and Bcl-x(L). Exp Cell Res. 2004;298(2):329–38.

    Article  CAS  PubMed  Google Scholar 

  44. Kundu J, Wahab SM, Kundu JK, Choi YL, Erkin OC, Lee HS, Park SG, Shin YK. Tob1 induces apoptosis and inhibits proliferation, migration and invasion of gastric cancer cells by activating Smad4 and inhibiting β-catenin signaling. Int J Oncol. 2012;41(3):839–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Z, Inuzuka H, Zhong J, Wan L, Fukushima H, Sarkar FH, Wei W. Tumor suppressor functions of FBW7 in cancer development and progression. FEBS Lett. 2012;586:1409–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global Cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  47. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362(9399):1907–17.

    Article  PubMed  Google Scholar 

  48. Wang C, Wang X, Su Z, Fei H, Liu X, Pan Q. mir-25 promotes hepatocellular carcinoma cell growth, migration and invasion by inhibiting RhoGDI1. Oncotarget. 2015;6(34):36231–44.

    PubMed  PubMed Central  Google Scholar 

  49. Hancock JF, Hall AA. novel role for RhoGDI as an inhibitor of GAP proteins. EMBO J. 1993;12(5):1915–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. He XX, Kuang SZ, Liao JZ, CR X, Chang Y, YL W, Gong J, Tian DA, Guo AY, Lin JS. The regulation of microRNA expression by DNA methylation in hepatocellular carcinoma. Mol Biosyst. 2015;11(2):532–9.

    Article  CAS  PubMed  Google Scholar 

  51. Frixa T, Donzelli S, Blandino G. Oncogenic MicroRNAs: kay players in malignant transformation. Cancers (Basel). 2015;7(4):2466–85.

    Article  Google Scholar 

  52. Zhao Z, Liu J, Wang C, Wang Y, Jiang Y, Guo M. MicroRNA-25 regulates small cell lung cancer cell development and cell cycle through cyclin E2. Int J Clin Exp Pathol. 2014;7(11):7726–34.

    PubMed  PubMed Central  Google Scholar 

  53. Xiang J, Hang JB, Che JM, Li HC. Mir-25 is upregolated in non-small cell lung cancer and promotes cell proliferation and motility by targeting FBXW7. Int J Clin Exp Pathol. 2015;8(8):9147–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang T, Chen T, Li Y, Gao L, Zhang S, Wang T, Chen M. Downregulation of mir-25 modulates non-small cell lung cancer cells by targeting CDC42. Tumor Biol. 2015;36:1903–11.

    Article  CAS  Google Scholar 

  55. Savita U, Karunagaran D. MicroRNA-106b-25 cluster targets β-TRCP2, increases the expression of Snail and enhances cell migration and invasion in H1299 (non small cell lung cancer) cells. Biochem Biophys Res Commun. 2013;434:841–7.

    Article  CAS  PubMed  Google Scholar 

  56. Chen Z, Wu Y, Meng Q, Xia Z. Elevated microRNA-25 inhibits cell apoptosis in lung cancer by targeting RGS3. In Vitro Cell Dev Biol Anim. 2016;52:62–7.

    Article  CAS  PubMed  Google Scholar 

  57. Wu T, Chen W, Kong D, Li X, Lu H, Liu S, Wang J, Du L, Kong Q, Huang X, Lu Z. mir-25 targets the modulator of apoptosis 1 gene in lung cancer. Carcinogenesis. 2015;36(8):925–35.

    Article  CAS  PubMed  Google Scholar 

  58. Olson MF, Ashworth A, Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science. 1995;269:1270–2.

    Article  CAS  PubMed  Google Scholar 

  59. Ishii M, Kurachi Y. Physiological actions of regulators of G-protein signaling (RGS) proteins. Life Sci. 2003;74(2-3):163–71.

    Article  CAS  PubMed  Google Scholar 

  60. Tan KO, Tan KM, Chan SL, Yee KS, Bevort M, Ang KC, Yu VC. MAP-1, a novel proapoptotic protein containing a BH3-like motif that associates with Bax through its Bcl-2 homology domains. J Biol Chem. 2003;276:2802–7.

    Article  Google Scholar 

  61. Maitland NJ, Collins AT. Prostate cancer stem cells: a new target for therapy. J Clin Oncol. 2008;26(17):2862–70.

    Article  PubMed  Google Scholar 

  62. Zoni E, van der Horst G, van de Merbel AF, Chen L, Rane JK, Pelger RC, Collins AT, Visakorpi T, Snaar-Jagalska BE, Maitland NJ, van der Pluijm G. mir-25 modulates invasiveness and dissemination of human prostate cancer cells via regulation of αv- and α6-integrin expression. Cancer Res. 2015;75(11):2326–36.

    Article  CAS  PubMed  Google Scholar 

  63. van der Hoogen C, van der Horst G, Cheung H, Buijs JT, Pelger RC, van der Pluijm G. Integrin alphav expression is required for the acquisition of a metastatic stem/progenitor cell phenotype in human prostate cancer. Am J Pathol. 2011;179(5):2559–68.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Meng X, Joosse SA, Muller V, Trillsch F, Milde-Langosch K, Mahner S, Geffken M, Pantel K, Schwarzenbach H. Diagnostic and prognostic potential of serum miR-7, miR-16, miR-25, miR93, miR-182, miR-376a and miR429 in ovarian cancer patients. Br J Cancer. 2015;113(9):1358–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang X, Meng X, Li H, Liu W, Shen S, Gao Z. MicroRNA-25 expression level is an independent prognostic factor in epithelial ovarian cancer. Clin Transl Oncol. 2014;16:954–8.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang HH, GL G, Zhang XY, Li FZ, Ding L, Fan Q, Wu R, Shi W, Wang XY, Chen L, Wei XM, Yuan XY. Primary analysis and screening of microRNAs in gastric cancer side population cells. World J Gastroenterol. 2015;21(12):3519–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhu C, Ren C, Han J, Ding Y, Du J, Dai N, Dai J, Ma H, Hu Z, Shen H, Xu Y, Jin G. A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer. Br J Cancer. 2014;110(9):2291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhou J, Zhou J, Wang W, Li W, Wu L, Li G, Shi J, Zhou S. The polymorphism in mir-25 attenuated the oncogenic function in gastric cancer. Tumor Biol. 2016;37:5515.

    Article  CAS  Google Scholar 

  69. Sadeghian Y, Kamyabi-Moghaddam Z, Nodushan SM, Khoshbakht S, Pedram B, Yahaghi E, Mokarizadeh A, Mohebbi M. Profiles of tissue microRNA; miR-148b and miR-25 serve as potential prognostic biomarkers for hepatocellular carcinoma. Tumor Biol. 2016;37:16379.

    Article  CAS  Google Scholar 

  70. Wen Y, Han J, Chen J, Dong J, Xia Y, Liu J, Jiang Y, Dai J, Lu J, Jin G, Han J, Wei Q, Shen H, Sun B, Hu Z. Plasma miRNAs as early biomarkers for detecting hepatocellular carcinoma. Int J Cancer. 2015;137(7):1679–90.

    Article  CAS  PubMed  Google Scholar 

  71. Li LM, Hu ZB, Zhou ZX, Chen X, Liu FY, Zhang JF, Shen HB, Zhang CY, Zen K. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res. 2010;70(23):9798–807.

    Article  CAS  PubMed  Google Scholar 

  72. Su ZX, Zhao J, Rong ZH, Geng WM, Wu YG, Qin CK. Upregulation of microRNA-25 associates with prognosis in hepatocellular carcinoma. Diagn Pathol. 2014;9:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang P, Yang D, Zhang H, Wei X, Ma T, Cheng Z, Hong Q, Hu J, Zhuo H, Song Y, Jia C, Jing F, Jin Q, Bai C, Mao H, Zhao J. Early detection of lung cancer in serum by a panel of microRNA biomarkers. Clin Lung Cancer. 2015;16(4):313–9.

    Article  CAS  PubMed  Google Scholar 

  74. Komatsu S, Ichikawa D, Hirajima S, Kawaguchi T, Miyamae M, Okajima W, Ohashi T, Arita T, Konishi H, Shiozaki A, Fujiwara H, Okamoto K, Yagi N, Otsuji E. Plasma microRNA profiles: identification of miR-25 as a novel diagnostic and monitoring biomarker in oesophageal squamous cell carcinoma. Br J Cancer. 2014;111(8):1614–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Mallardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caiazza, C., Poltronieri, P., Mallardo, M. (2018). The Roles of miR-25 and Its Targeted Genes in Human Cancer. In: Fayyaz, S., Farooqi, A. (eds) Recent Trends in Cancer Biology: Spotlight on Signaling Cascades and microRNAs. Springer, Cham. https://doi.org/10.1007/978-3-319-71553-7_7

Download citation

Publish with us

Policies and ethics