Skip to main content

Tranquilizing and Awakening ATM to Promote Killing of Cancer Cells

  • Chapter
  • First Online:
Recent Trends in Cancer Biology: Spotlight on Signaling Cascades and microRNAs

Abstract

Maintenance of genomic integrity is a major challenge, as DNA is exposed to incessantly ongoing nucleolytic attacks from both exogenous and endogenous sources. To overcome these stumbling blocks, cells have evolved a global DNA damage response (DDR), which is an intricate and hierarchically organized network of interweaved pathways that are “switched on” whenever genotoxic insults occurs. ATM, ATR, and DNA-PK are multitalented modulators of DNA damage signaling which play a significant role in synchronizing and orchestrating an array of proteins at the site of DNA damage. Overwhelmingly, genomic and proteomic data have helped us to map the landscape of ATM mediated regulation of myriad of proteins in normal and cancer cells. Complex information has shown to “diametrically opposed” roles of ATM kinase in different cancers. Scientists have investigated effects of ATM activation and inhibition in different cancers and it is now clear that context-dependent activation or inhibition can consequently improve apoptotic rate of cancer cells. In this chapter we will summarize the most recent advancements of ATM kinase in different cancers and critically evaluated the effects of ATM activation or inhibition on apoptosis and drug resistance of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uziel T, et al. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 2003;22(20):5612–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee J-H, Paull TT. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science. 2005;308(5721):551–4.

    Article  CAS  PubMed  Google Scholar 

  3. Stewart GS, et al. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature. 2003;421:961–6.

    Article  CAS  PubMed  Google Scholar 

  4. Asaithamby A, Chen DJ. Cellular responses to DNA double-strand breaks after low-dose y-irradiation. Nucleic Acids Res. 2009;37(12):3912–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schlissel M, et al. Double-strand signal sequence breaks in V(D)J recombination are blunt, 5'-phosphorylated, RAG-dependent, and celIcycle regulated. Genes Dev. 1993;7:2520–32.

    Article  CAS  PubMed  Google Scholar 

  6. Lange J, et al. ATM controls meiotic double-strand-break formation. Nature. 2011;479:237–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bosottia R, et al. FAT: a novel domain in PIK-related kinases. Trends Biochem Sci. 2000;25(5):225–7.

    Article  Google Scholar 

  8. Abraham RT. PI 3-kinase related kinases: ‘big’ players in stress-induced signaling pathways. DNA Repair (Amst). 2004;3:883–7.

    Article  CAS  Google Scholar 

  9. Murr R, et al. Histone acetylation by Trrap–Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol. 2006;8(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  10. Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell. 2017;66(6):801–17.

    Article  CAS  PubMed  Google Scholar 

  11. Sukhanova MV, et al. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging. Nucleic Acids Res. 2016;44(6):e60.

    Article  PubMed  Google Scholar 

  12. Ali AAE, et al. The zinc-finger domains of PARP1 cooperate to recognize DNA strand breaks. Nat Struct Mol Biol. 2012;19:685–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Riccio AA, et al. PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage. Nucleic Acids Res. 2016;44(4):1691–702.

    Article  PubMed  Google Scholar 

  14. Walker JR, et al. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001;412:607–14.

    Article  CAS  PubMed  Google Scholar 

  15. McElhinny SAN, et al. Ku recruits the XRCC4-Ligase IV complex to DNA ends. Mol Cell Biol. 2000;20(9):2996–3003.

    Article  Google Scholar 

  16. Cheng Q, et al. Ku counteracts mobilization of PARP1 and MRN in chromatin damaged with DNA double-strand breaks. Nucleic Acids Res. 2011;39(22):9605–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haince J-F, et al. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J Biol Chem. 2008;283(2):1197–207.

    Article  CAS  PubMed  Google Scholar 

  18. Czornak K, et al. Mystery of DNA repair: the role of the MRN complex and ATM kinase in DNA damage repair. J Appl Genet. 2008;49(4):383–96.

    Article  PubMed  Google Scholar 

  19. Kaidi A, Jackson SP. KAT5 tyrosine phosphorylation couples chromatin sensing to ATM signalling. Nature. 2012;498:70–4.

    Article  Google Scholar 

  20. Adamowicz M, et al. NOTCH1 inhibits activation of ATM by impairing the formation of an ATM-FOXO3a-KAT5/Tip60 complex. Cell Rep. 2016;16(8):2068–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun Y, et al. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci U S A. 2005;102(37):13182–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gerloff DL, et al. BRCT domains: a little more than kin, and less than kind. FBBS Lett. 2013;586(17):2711–22716.

    Article  Google Scholar 

  23. Stucki M, et al. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell. 2005;123(7):1213–26.

    Article  CAS  PubMed  Google Scholar 

  24. Lou Z, et al. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell. 2006;21(2):187–200.

    Article  CAS  PubMed  Google Scholar 

  25. Huen MSY, et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell. 2007;131(5):901–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mailand N, et al. RNF8 ubiquitylates histones at DNA Double-strand breaks and promotes assembly of repair proteins. Cell. 2007;131(5):887–900.

    Article  CAS  PubMed  Google Scholar 

  27. Mattiroli F, et al. RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell. 2012;150(6):1182–95.

    Article  CAS  PubMed  Google Scholar 

  28. Botuyan MV, et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell. 2006;127(7):1361–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sims JJ, Cohen RE. Linkage-specific avidity defines the lysine 63-linked polyubiquitin binding preference of RAP80. Mol Cell. 2010;33(6):775–83.

    Article  Google Scholar 

  30. Coleman KA, Greenberg RA. The BRCA1-RAP80 complex regulates DNA repair mechanism utilization by restricting end resection. J Biol Chem. 2011;286:13669–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng L, et al. Cell cycle-dependent inhibition of 53BP1 signaling by BRCA1. Cell Discov. 2015;1:15019.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bryant HE, et al. PARP is activated as stalled foprks to mediate Mre11-dependent replication restart and recombination. EMBO J. 2009;27(17):2601–15.

    Article  Google Scholar 

  33. Karanjawalaa ZE, et al. The embryonic lethality in DNA ligase IV-deficient mice is rescued by deletion of Ku: implications for unifying the heterogeneous phenotypes of NHEJ mutants. DNA Repair. 2002;1(12):1017–26.

    Article  Google Scholar 

  34. Mao Z, et al. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cell. Cell Cycle. 2008;7(18):2902–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boersma V, et al. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection. Nature. 2015;521:534–40.

    Article  Google Scholar 

  36. Davis AJ, Chen D. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. 2013;2(3):130–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang H, et al. The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR–mediated double-strand break repair. PLoS Genet. 2013;9(2):e1003277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cruz-Garcia A, et al. BRCA1 accelerates CtIP-mediated DNA-end resection. Cell Rep. 2014;9:451–9.

    Article  CAS  PubMed  Google Scholar 

  39. Huertas P, Jackson SP. Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J Biol Chem. 2009;284(14):9558–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yun MH, Hiom K. CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature. 2009;459:460–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Densham RM, et al. Human BRCA1–BARD1 ubiquitin ligase activity counteracts chromatin barriers to DNA resection. Nat Struct Mol Biol. 2016;23:647–55.

    Article  CAS  PubMed  Google Scholar 

  42. Nimonkar AV, et al. Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci U S A. 2008;105(44):16906–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sartori AA, et al. Human CtIP promotes DNA end resection. Nature. 2007;450(7169):509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tkáč J, et al. HELB is a feedback inhibitor of DNA end resection. Mol Cell. 2016;61(3):405–18.

    Article  PubMed  Google Scholar 

  45. Piwko W, et al. The MMS22L–TONSL heterodimer directly promotes RAD51-dependent recombination upon replication stress. EMBO J. 2016;35(23):2584–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tao S, Meng S, Zheng X, Xie L. ATM participates in the regulation of viability and cell cycle via ellipticine in bladder cancer. Mol Med Rep. 2017;15(3):1143–8. https://doi.org/10.3892/mmr.2017.6141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zheng M, Zhu Z, Zhao Y, Yao D, Wu M, Sun G. Oridonin promotes G2/M arrest in A549 cells by facilitating ATM activation. Mol Med Rep. 2017;15(1):375–9. https://doi.org/10.3892/mmr.2016.6008.

    Article  CAS  PubMed  Google Scholar 

  48. Tsai TC, Huang HP, Chang KT, Wang CJ, Chang YC. Anthocyanins from roselle extract arrest cell cycle G2/M phase transition via ATM/Chk pathway in p53-deficient leukemia HL-60 cells. Environ Toxicol. 2017;32(4):1290–304. https://doi.org/10.1002/tox.22324.

    Article  CAS  PubMed  Google Scholar 

  49. Croglio MP, Haake JM, Ryan CP, Wang VS, Lapier J, Schlarbaum JP, Dayani Y, Artuso E, Prandi C, Koltai H, Agama K, Pommier Y, Chen Y, Tricoli L, LaRocque JR, Albanese C, Yarden RI. Analogs of the novel phytohormone, strigolactone, trigger apoptosis and synergize with PARP inhibitors by inducing DNA damage and inhibiting DNA repair. Oncotarget. 2016;7(12):13984–4001. 10.18632/oncotarget.7414.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wu L-Y. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells. Am J Chin Med. 2015;43:365–82.

    Article  CAS  PubMed  Google Scholar 

  51. He H, Chang R, Zhang T, Yang C, Kong Z. ATM mediates DAB2IP-deficient bladder cancer cell resistance to ionizing radiation through the p38MAPK and NF-κB signaling pathway. Mol Med Rep. 2017;16(2):1216–22. https://doi.org/10.3892/mmr.2017.6689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang C, Jette N, Moussienko D, Bebb DG, Lees-Miller SP. ATM-Deficient colorectal cancer cells are sensitive to the PARP inhibitor olaparib. Transl Oncol. 2017;10(2):190–6. https://doi.org/10.1016/j.tranon.2017.01.007.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu R, Tang J, Ding C, Liang W, Zhang L, Chen T, Xiong Y, Dai X, Li W, Xu Y, Hu J, Lu L, Liao W, Lu X. The depletion of ATM inhibits colon cancer proliferation and migration via B56γ2-mediated Chk1/p53/CD44 cascades. Cancer Lett. 2017;390:48–57. https://doi.org/10.1016/j.canlet.2016.12.040.

    Article  CAS  PubMed  Google Scholar 

  54. Rezaeian AH, Li CF, Wu CY, Zhang X, Delacerda J, You MJ, Han F, Cai Z, Jeong YS, Jin G, Phan L, Chou PC, Lee MH, Hung MC, Sarbassov D, Lin HK. A hypoxia-responsive TRAF6-ATM-H2AX signalling axis promotes HIF1α activation, tumorigenesis and metastasis. Nat Cell Biol. 2017;19(1):38–51. https://doi.org/10.1038/ncb3445.

    Article  CAS  PubMed  Google Scholar 

  55. Gregory MA, D’Alessandro A, Alvarez-Calderon F, Kim J, Nemkov T, Adane B, Rozhok AI, Kumar A, Kumar V, Pollyea DA, Wempe MF, Jordan CT, Serkova NJ, Tan AC, Hansen KC, DeGregori J. ATM/G6PD-driven redox metabolism promotes FLT3 inhibitor resistance in acute myeloid leukemia. Proc Natl Acad Sci U S A. 2016;113(43):E6669–78. Epub 2016 Oct 10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahzad Bhatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lim, Y.C., Bhatti, S., Farooqi, A.A. (2018). Tranquilizing and Awakening ATM to Promote Killing of Cancer Cells. In: Fayyaz, S., Farooqi, A. (eds) Recent Trends in Cancer Biology: Spotlight on Signaling Cascades and microRNAs. Springer, Cham. https://doi.org/10.1007/978-3-319-71553-7_4

Download citation

Publish with us

Policies and ethics