Skip to main content

Precision Agriculture and Food Security in Africa

  • Chapter
  • First Online:
Systems Analysis Approach for Complex Global Challenges

Abstract

Background and Significance of the topic: The chapter gives an overview of precision agriculture and its impacts on food security in Africa. Methodology: Methods and concepts of precision agriculture are described including crop, soil and position sensors; which include global positioning and remote sensing applications in detection of crop stress, monitoring variability, soils, weeds, and diseases. Machine controls and computer based systems are also briefly described. Application/Relevance to systems analysis: There are a number of operations that can benefit from precision agriculture at field level, including soil preparation, fertilisation, irrigation and weed management. In Africa, the benefits of precision agriculture include improved food security through increases in water and nutrient use efficiency, and timely management of activities such as weed control. Precision agriculture has saved costs of inputs in both commercial and smallholder farming in Africa. Pollution control of ground and surface water sources has slowed down where fertiliser and agrochemical applications are now more efficient. Policy and/or practice implications: Two examples of precision agriculture application in Africa are presented; FruitLook which is used by farmers in the Western Cape in South Africa as a state-of the art information technology that helps deciduous fruit and grape farmers to be water efficient and climate-smart. The Chameleon and Wetting Front Detector Sensors have enabled small scale farmers in Mozambique, Tanzania, and Zimbabwe to cut down irrigation frequency fifty times and double productivity. Discussion and conclusion: It is clear that precision agriculture has played a major role in improving food security in Africa through the efficient use of inputs such as fertiliser and water, while also reducing environmental pollution and degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamchuk, V. I., Hummel, J. W., Morgan, M. T., & Upadhyaya, S. K. (2004). On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 44(1), 71–91.

    Article  Google Scholar 

  • Auernhammer, H. (2001). Precision farming-the environmental challenge. Computers and Electronics in Agriculture, 30(1), 31–43.

    Article  Google Scholar 

  • Bakhtiari, A. A., & Hematian, A. (2013). Precision farming technology, opportunities and difficulty. International Journal for Science and Emerging Technologies with Latest Trends, 5(1), 1–14.

    Google Scholar 

  • Bationo, A., Fairhurst, T., Giller, K., Kelly, V., Lunduka, R., & Mando, A. (2012). Handbook for integrated soil fertility management. Africa Soil Health Consortium (CAB International 156).

    Google Scholar 

  • Batte, M. T., & VanBuren, F. N. (1999). Precision farming-factors influencing profitability. In Northern Ohio Crops Day meeting, Wood County, Ohio (Vol. 21).

    Google Scholar 

  • Bolotova, Y. (2006). Crop production using variable rate technology for P&K in the United States Midwest: Evaluation of profitability. American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association). Annual meeting. Long Beach, CA No. 21098:23–26 July.

    Google Scholar 

  • Bongiovanni, R., & Lowenberg-DeBoer, J. (2004). Precision agriculture and sustainability. Precision Agriculture, 5(4), 359–387.

    Article  Google Scholar 

  • Cao, Q., Cui, Z., Chen, X., Khosla, R., Dao, T. H., & Miao, Y. (2012). Quantifying spatial variability of indigenous nitrogen supply for precision nitrogen management in small scale farming. Precision Agriculture, 13(1), 45–61.

    Article  Google Scholar 

  • Davis, G., Casady, W. W., & Massey, R. E. (1998). Precision agriculture: An introduction. Columbia: Extension publications, (MU).

    Google Scholar 

  • Dennis, H. J., & Nell, W. T. (2002). Precision irrigation in South Africa. In A Paper Presented at the 13th International Farm Management Congress, 7–12 July 2002. Wageningen, The Netherlands.

    Google Scholar 

  • Dobermann, A., & Nelson, R. (2013). Opportunities and solutions for sustainable food production. United Nations: Sustainable Development Solutions Network.

    Google Scholar 

  • FAO. (2015). The state of food and agriculture. Social protection and agriculture: Breaking the cycle of rural poverty (p. 151). Food and Agriculture Organization of the United Nations. Rome, Italy.

    Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., & Lawrence, D. (2010). Food security: The challenge of feeding 9 billion people. Science, 327, 812–818.

    Article  Google Scholar 

  • Grisso, R. D., Alley, M. M., & Heatwole, C. D. (2005). Precision Farming Tools. Global Positioning System (GPS).

    Google Scholar 

  • Grisso, R. D., Alley, M. M., & McClellan, P. (2005a). Precision Farming Tools. Yield Monitor.

    Google Scholar 

  • Grisso, R. D., Alley, M. M., McClellan, P., Brann, D. E., & Donohue, S. J. (2005b). Precision farming a comprehensive approach.

    Google Scholar 

  • Grisso, R. D., Alley, M. M., Thomason, W. E., Holshouser, D. L., & Roberson, G. T. (2011). Precision farming tools: Variable-rate application.

    Google Scholar 

  • Ibrahim, A., Pasternak, D., & Fatonji, D. (2015). Impact of depth of placement of mineral fertilizer micro-dosing on growth, yield and partial nutrient balance in pearl millet cropping system in the Sahel. Journal of Agricultural Science, 153, 1412–1421.

    Article  Google Scholar 

  • Jensen, H. G., Jacobsen, L. B., Pedersen, S. M., & Tavella, E. (2012). Socioeconomic impact of widespread adoption of precision farming and controlled traffic systems in Denmark. Precision Agriculture, 13(6), 661–677.

    Article  Google Scholar 

  • Kerry, R., Goovaerts, P., Giménez, D., & Oudemans, P. V. (2017). Investigating temporal and spatial patterns of cranberry yield in New Jersey fields. Precision Agriculture, 18(4), 507–524.

    Article  Google Scholar 

  • Kincheloe, S. (1994). Tools to aid management: The use of site specific management. Journal of Soil and Water Conservation, 49(2), 43.

    Google Scholar 

  • Kitchen, N. R., Snyder, C. J., Franzen, D. W., & Wiebold, W. J. (2002). Educational needs of precision agriculture. Precision Agriculture, 3(4), 341–351.

    Article  Google Scholar 

  • Knight, B., & Malcolm, B. (2009). A whole-farm investment analysis of some precision agriculture technologies. Australian Farm Business Management Journal, 6(1), 41.

    Google Scholar 

  • Kushke, I., & Jordaan, J. (2017). Agriculture: 2017 Market Intelligence Report. [Online]. http://www.greencape.co.za/assets/Uploads/GreenCape-Agri-MIR-2017-electronic-FINAL-v1.pdf. Accessed 8 Sep 2017.

  • Lafitte, H. R. (1994). Identifying production problems in tropical maize: A field guide. DF, CIMMYT: Mexico.

    Google Scholar 

  • Leech, P., & Newbold, A. (2012). Agricultural Engineering: a key discipline for agriculture to deliver global food security. A status report developed by IAgrE in response to the UK Government’s Foresight Project: Global Food and Farming Futures. Cranfield, UK. https://iagre.org/kcfinder/upload/files/documents/3315_IAG_Global_Food_Security_v11.pdf. 58p.

  • Lowenberg-DeBoer, J., & Erickson, B. (2010). The search for the killer app: Precision farming in Africa. Georgetown Journal of International Affairs, 11(2), 107–116. http://www.jstor.org/stable/43133849.

  • Mabasa, S., & Nyahunzvi, S. (1994). Maize competition in communal areas in three agro-ecological zones of Zimbabwe. In Jewell, D. C., Waddington, S. R., Ransom, J. K., & Pixley, K. V. (Eds.), Maize for stress environments. Proceeding of the fourth Eastern and Southern Africa regional maize conference, (Vol. 28) March-1 April 1994. Harare, Zimbabwe.

    Google Scholar 

  • McBratney, A., Whelan, B., Ancev, T., & Bouma, J. (2005). Future directions of precision agriculture. Precision Agriculture, 6(1), 7–23.

    Article  Google Scholar 

  • McLoud, P. R., Gronwald, R., & Kuykendall, H. (2007). Precision agriculture: NRCS support for emerging technologies No. 1. Agronomy Technical Note.

    Google Scholar 

  • Mdemu, M. V., Mziray, N., Bjornlund, H., & Kashaigili, J. J. (2017). Barriers to and opportunities for improving productivity and profitability of the Kiwere and Magozi irrigation schemes in Tanzania. International Journal of Water Resources Development, 33(5), 725–739.

    Article  Google Scholar 

  • Mondal, P., & Basu, M. (2009). Adoption of precision agriculture technologies in India and in some developing countries: Scope, present status and strategies. Progress in Natural Science, 19(6), 659–666.

    Article  Google Scholar 

  • Moran, M. S., Inoue, Y., & Barnes, E. M. (1997). Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of Environment, 61(3), 319–346.

    Article  Google Scholar 

  • Oliver, M. A., Bishop, T. F. A., & Marchant, B. P. (2013). Precision agriculture for sustainability and environmental protection. Earth Scan Food and Agriculture. Abingdon: Routledge.

    Google Scholar 

  • Pittock, J., & Ramshaw, P. (2016). Annual report: Increasing irrigation water productivity in Mozambique, Tanzania and Zimbabwe through on-farm monitoring, adaptive management and agricultural innovation platforms. Project number, FSC-2013–006.

    Google Scholar 

  • Reichardt, M., & Jürgens, C. (2009). Adoption and future perspective of precision farming in Germany: Results of several surveys among different agricultural target groups. Precision Agriculture, 10(1), 73–94.

    Article  Google Scholar 

  • Rider, T. W., Vogel, J. W., Dille, J. A., Dhuyvetter, K. C., & Kastens, T. L. (2006). An economic evaluation of site-specific herbicide application. Precision Agriculture, 7(6), 379–392.

    Article  Google Scholar 

  • Rilwani, M. L., & Ikhuoria, I. A. (2006). Precision farming with geoinformatics: A new paradigm for agricultural production in a developing country. Transactions in GIS, 10(2), 177–197.

    Article  Google Scholar 

  • Sawyer, J. E. (1994). Concepts of variable rate technology with considerations for fertilizer application. Journal of Production Agriculture, 7(2), 195–201.

    Article  Google Scholar 

  • Shumba, E. M., Waddington, S. R., & Rukuni, M. (1989). Delayed maize plantings in a smallholder farming area of Zimbabwe: Problem diagnosis. Zimbabwe Journal of Agricultural Research, 27, 103–112.

    Google Scholar 

  • Silva, C. B., do Vale, S. M. L. R., Pinto, F. A., Müller, C. A., & Moura, A. D. (2007). The economic feasibility of precision agriculture in Mato Grosso do Sul State, Brazil: A case study. Precision Agriculture, 8(6), 255–265.

    Article  Google Scholar 

  • Smith, R., & Baillie, J. (2009). Defining precision irrigation: A new approach to irrigation management. In Irrigation Australia 2009: Irrigation Australia Irrigation and Drainage Conference: Proceedings (pp. 1–6). Irrigation Australia Ltd.

    Google Scholar 

  • Sood, K., Singh, S., Rana, R. S., Rana, A., Kalia, V., & Kaushal, A. (2015). Application of GIS in precision agriculture. In Paper presented as lead lecture in national seminar on “Precision farming technologies for high Himalayas” 04–05 October, 2015, organized by Precision farming development centre and High Mountain Arid Agriculture Research Institute, Leh, Ladakh, Jammu and Kashmir. India 8–16.

    Google Scholar 

  • Stirzaker, R. (2005). Managing irrigation with a wetting front detector. UK Irrigation, 33, 22–24.

    Google Scholar 

  • Stirzaker, R. J. (2003). When to turn the water off: Scheduling micro-irrigation with a wetting front detector. Irrigation Science, 22, 177–185. https://doi.org/10.1007/s00271-003-0083-5.

    Article  Google Scholar 

  • Strickland, R. M., Ess, D. R., & Parsons, S. D. (1998). Precision farming and precision pest management: The power of new crop production technologies. Journal of Nematology, 30(4), 431.

    Google Scholar 

  • Sylvester-Bradley, R., Lord, E., Sparkes, D. L., Scott, R. K., Wiltshire, J. J. J., & Orson, J. (1999). An analysis of the potential of precision farming in Northern Europe. Soil Use and Management, 15(1), 1–8.

    Article  Google Scholar 

  • Takács-György, K., Lencses, E., & Takács, I. (2013). Economic benefits of precision weed control and why its uptake is so slow. Studies in Agricultural Economics, 115(1).

    Article  Google Scholar 

  • Talebpour, B., Turker, U., & Yegul, U. (2015). The role of precision agriculture in the promotion of food security. International Journal of Agricultural and Food Research, 4(1), 1–23.

    Article  Google Scholar 

  • Thierfelder, C., Rusinamhodzi, L., Ngwira, A. R., Mupangwa, W., Nyagumbo, I., Kassie, G. T., et al. (2014). Conservation agriculture in Southern Africa: Advances in knowledge. Renewable Agriculture and Food Systems, 30, 328–348.

    Article  Google Scholar 

  • Tweteen, L. (1996). Is precision farming good for society? An economist’s view. Better Crops, 80(3), 3–5.

    Google Scholar 

  • Twomlow, S., Hove, L., Mupangwa, W., Masikati, P., & Mashingaidze, N. (2008). Precision conservation agriculture for vulnerable farmers in low potential zones. In Proceedings of the workshop on increasing the productivity and sustainability of rain-fed cropping systems of poor, smallholder farmers. Tamale, Ghana, 22–25, September 2008.

    Google Scholar 

  • Twomlow, S., Rohrbach, D., Dimes, J., Rusike, J., Mupangwa, W., Ncube, B., et al. (2010). Micro-dosing as a pathway to Africa’s green revolution: Evidence from broad-scale on-farm trials. Nutrient Cycling in Agroecosystems, 88, 3–15.

    Article  Google Scholar 

  • Twomlow, S. J., Steyn, J. T., & du Preez, C. C. (2006). Chapter 19: Dryland farming in Southern Africa. In Petersen, G. A., Unger, W. P., & Payne, W. A. (Eds.), Dryland agriculture (Agronomy monograph) (2nd Ed. No. 23, pp. 769–836), Madison, Wisconsin: American Society of Agronomy.

    Google Scholar 

  • Whelan, B. M., & McBratney, A. B. (2000). The “null hypothesis” of precision agriculture management. Precision Agriculture, 2(3), 265–279.

    Article  Google Scholar 

  • Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—A worldwide overview. Computers and Electronics in Agriculture, 36(2), 113–132.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bongani Ncube .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ncube, B., Mupangwa, W., French, A. (2018). Precision Agriculture and Food Security in Africa. In: Mensah, P., Katerere, D., Hachigonta, S., Roodt, A. (eds) Systems Analysis Approach for Complex Global Challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-71486-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71486-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71485-1

  • Online ISBN: 978-3-319-71486-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics