Skip to main content

Complexity and Stability of Adaptive Ecological Networks: A Survey of the Theory in Community Ecology

  • Chapter
  • First Online:
Systems Analysis Approach for Complex Global Challenges

Abstract

Background and Significance of the topic: The planet is changing at paces never observed before. Species extinction is happening at faster rates than ever, greatly exceeding the five mass extinctions in the fossil record. Nevertheless, human life is strongly based on services provided by ecosystems, thus the responses to global change of the planet’s natural heritage are of immediate concern. Understanding the relationship between complexity and stability of ecosystems is of key importance for the maintenance of the balance of human growth and the conservation of all the natural services that ecosystems provide. Methodology: The concept of ecological networks and their characteristics are first introduced, followed by central and occasionally contrasting definitions of complexity and stability. The literature on the relationship between complexity and stability in different types of models and few real ecosystems is then reviewed, highlighting the theoretical debate and the lack of consensual agreement. Application/Relevance to systems analysis: This chapter uses ecological-network models to study the relationship between complexity and stability of natural ecosystems. Policy and/or practice implications: Mathematical network models can be used to simplify the vast complexity of the real world, to formally describe and investigate ecological phenomena, and to understand ecosystems propensity of returning to its functioning regime after a stress or a perturbation. Discussion and conclusion: The chapter concludes by summarising the importance of this line of research for the successful management and conservation of biodiversity and ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allesina, S., & Pascual, M. (2008). Network structure, predator-prey modules, and stability in large food webs. Theoretical Ecology, 1, 55–64.

    Google Scholar 

  • Allesina, S., & Tang, S. (2012). Stability criteria for complex ecosystems. Nature, 483, 205–208.

    Google Scholar 

  • Almeida-Neto, M., Guimarães, P., Guimarães Jr., P. R., et al. (2008). A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. Oikos, 117, 1227–1239.

    Google Scholar 

  • Atmar, W., & Patterson, B. D. (1993). The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia, 96, 373–382.

    Google Scholar 

  • Bascompte, J., Jordano, P., Melián, C. J., et al. (2003). The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, 100, 9383–9387.

    Google Scholar 

  • Bascompte, J., Jordano, P., & Olesen, J. M. (2006). Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312, 431–433.

    Google Scholar 

  • Bastolla, U., Fortuna, M. A., Pascual-Garcia, A., et al. (2009). The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature, 458, 1018–1021.

    Google Scholar 

  • Baird, D., Luczkovich, J. J., & Christian, R. R. (1998). Assessment of spatial and temporal variability in ecosystem attributes of the St. Marks National Wildlife Refuge, Apalachee Bay, Florida. Estuarine Coastal Shelf Science, 47, 329–349.

    Google Scholar 

  • Baird, D., & Mehta, A. (Eds.). (2011). Estuarine and coastal ecosystem modeling, Volume 9 in Treatise on estuarine and coastal science. Amsterdam: Elsevier.

    Google Scholar 

  • Banašek-Richter, C., Bersier, L. F., Cattin, M. F., et al. (2009). Complexity in quantitative food webs. Ecology, 90, 1470–1477.

    Google Scholar 

  • Beckerman, A., Petchey, O. L., & Morin, P. J. (2010). Adaptive foragers and community ecology: Linking individuals to communities and ecosystems. Functional Ecology, 24, 1–6.

    Google Scholar 

  • Berlow, E. L. (1999). Strong effects of weak interactions in ecological communities. Nature, 398, 330–334.

    Google Scholar 

  • Berlow, E. L., Neutel, A. M., Cohen, J. E., et al. (2004). Interaction strengths in food webs: Issues and opportunities. Journal of Animal Ecology, 73, 585–598.

    Google Scholar 

  • Bersier, L. F., Banašek-Richter, C., & Cattin, M. F. (2002). Quantitative descriptors of food-web matrices. Ecology, 83, 2394–2407.

    Google Scholar 

  • Bonchev, D., & Buck, G. A. (2007). Quantitative measures of network complexity. In Complexity in chemistry, biology, and ecology. Berlin: Springer.

    Google Scholar 

  • Borrelli, J. J., Allesina, S., Amarasekare, P., et al. (2015). Selection on stability across ecological scales. Trends in Ecology & Evolution, 30, 417–425.

    Google Scholar 

  • Borrvall, C., Ebenman, B., & Jonsson, T. (2000). Biodiversity lessens the risk of cascading extinction in model food webs. Ecology Letters, 3, 131–136.

    Google Scholar 

  • Brännström, Å., Loeuille, N., Loreau, M., et al. (2011). Emergence and maintenance of biodiversity in an evolutionary food-web model. Theoretical Ecology, 4, 467–478.

    Google Scholar 

  • Brännström, Å., Johansson, J., Loeuille, N., et al. (2012). Modelling the ecology and evolution of communities: A review of past achievements, current efforts, and future promises. Evolutionary Ecology Research, 14, 601–625.

    Google Scholar 

  • Brown, J. H., Calder III, W. A., & Kodric-Brown, A. (1978). Correlates and consequences of body size in nectar-feeding birds. American Zoologist, 68, 687–700.

    Google Scholar 

  • Campbell, C., Yang, S., Shea, K., et al. (2012). Topology of plant-pollinator networks that are vulnerable to collapse from species extinction. Physical Review E, 86, 02192.

    Google Scholar 

  • Camacho, J., Guimerà, R., & Amaral, L. A. N. (2002). Robust patterns in food web structure. Physical Review Letters, 88, 228102.

    Google Scholar 

  • Cattin, M. F., Bersier, L. F., Banašek-Richter, C., et al. (2004). Phylogenetic constraints and adaptation explain food-web structure. Nature, 427, 835–839.

    Google Scholar 

  • Chen, X., & Cohen, J. E. (2001). Global stability, local stability and permanence in model food webs. Journal of Theoretical Biology, 212, 223–235.

    Google Scholar 

  • Christianou, M., & Kokkoris, G. D. (2008). Complexity does not affect stability in feasible model communities. Journal of Theoretical Biology, 253, 162–169.

    MathSciNet  Google Scholar 

  • Cohen, J. E., & Briand, F. (1984). Trophic links of community food webs. Proceedings of the National Academy of Sciences of the United States of America, 81, 4105–4109.

    MATH  Google Scholar 

  • Cohen, J. E., & Newman, C. M. (1985). A stochastic theory of community food webs. Proceedings of the Royal Society of London B, 224, 421–448.

    Google Scholar 

  • Cohen, J. E., Briand, F., & Newman, C. M. (1990). Community food webs: Data and theory. Biomathematics 20. Berlin: Springer.

    MATH  Google Scholar 

  • D’Alelio, D., Libralato, S., Wyatt, T., et al. (2016). Ecological-network models link diversity, structure and function in the plankton food-web. Scientific Reports, 6, 21806.

    Google Scholar 

  • Darwin, C. (1862). On the various contrivances by which British and foreign orchids are fertilized by insect. London: Murray.

    Google Scholar 

  • De Angelis, D. L. (1975). Stability and connectance in food web models. Ecology, 56, 238–243.

    Google Scholar 

  • De Ruiter, P. C., Neutel, A.-M., & Moore, J. C. (1995). Energetics, patterns of interaction strengths, and stability in real ecosystems. Science, 269, 1257–1260.

    Google Scholar 

  • Donohue, I., Petchey, O. L., Montoya, J. M., et al. (2013). On the dimensionality of ecological stability. Ecology Letters, 16, 421–429.

    Google Scholar 

  • Dormann, C. F., Fründ, J., Blüthgen, N., et al. (2009). Indices, graphs and null models: Analysing bipartite ecological networks. The Open Ecology Journal, 2, 7–24.

    Google Scholar 

  • Dunne, J. A., & Williams, R. J. (2009). Cascading extinctions and community collapse in model food webs. Philosophical Transactions of the Royal Society of London B, 364, 1711–1725.

    Google Scholar 

  • Dunne, J. A., Williams, R. J., & Martinez, N. D. (2002a). Food-web structure and network theory: The role of connectance and size. Proceedings of the National Academy of Sciences of the United States of America, 99, 12917–12922.

    Google Scholar 

  • Dunne, J. A., Williams, R. J., & Martinez, N. D. (2002b). Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecology Letters, 8, 558–567.

    Google Scholar 

  • Dunne, J. A., Williams, R. J., & Martinez, N. D. (2004). Network structure and robustness of marine food webs. Marine Ecology Progress Series, 273, 291–302.

    Google Scholar 

  • Dupont, Y. L., & Olesen, J. M. (2012). Stability of modularity and structural keystone species in temporal cumulative plant-flower-visitor networks. Ecological Complexity, 11, 84–90.

    Google Scholar 

  • Ehrlich, P. R., & Raven, P. H. (1964). Butterflies and plants: A study in coevolution. Evolution, 18, 586–608.

    Google Scholar 

  • Elton, C. S. (1958). Ecology of invasions by animals and plants. London: Chapman and Hall.

    Google Scholar 

  • Emmerson, M. C., & Raffaelli, D. (2004). Predator-prey body size, interaction strength and the stability of a real food web. Journal of Animal Ecology, 73, 399–409.

    Google Scholar 

  • Emmerson, M. C., & Yearsley, J. M. (2004). Weak interactions, omnivory and emergent food-web properties. Proceedings of the Royal Society of London B, 271, 397–405.

    Google Scholar 

  • Feng, W., & Takemoto, K. (2014). Heterogeneity in ecological mutualistic networks dominantly determines community stability. Scientific Reports, 4, 5912.

    Google Scholar 

  • Ferrière, R., Bronstein, J. L., Rinaldi, S., et al. (2002). Cheating and the evolutionary stability of mutualisms. Proceedings of the Royal Society of London B, 269, 773–780.

    Google Scholar 

  • Fowler, M. S. (2009). Increasing community size and connectance can increase stability in competitive communities. Journal of Theoretical Biology, 258, 179–188.

    MathSciNet  Google Scholar 

  • Fussman, G. F., Loreau, M., & Abrams, P. (2007). Eco-evolutionary dynamics of communities and ecosystems. Functional Ecology, 21, 465477.

    Google Scholar 

  • Goldwasser, L., & Roughgarden, J. (1993). Construction of a large Caribbean food web. Ecology, 74, 1216–1233.

    Google Scholar 

  • Gravel, D., Massol, F., & Leibold, M. A. (2016). Stability and complexity in model meta-communities. Nature Communications, 7, 12457.

    Google Scholar 

  • Grilli, J., Rogers, T., & Allesina, S. (2016). Modularity and stability in ecological networks. Nature Communications, 7, 12031.

    Google Scholar 

  • Gross, T., Rudolf, L., Levin, S. A., et al. (2009). Generalized models reveal stabilizing factors in food webs. Science, 325, 747–750.

    Google Scholar 

  • Gross, T., & Sayama, H. (Eds.). (2009). Adaptive networks: Theory, models and applications. Berlin: Springer.

    Google Scholar 

  • Havens, K. (1992). Scale and structure in natural food webs. Science, 257, 1107–1109.

    Google Scholar 

  • Haydon, D. (1994). Pivotal assumptions determining the relationship between stability and complexity: An analytical synthesis of the stability-complexity debate. American Naturalist, 144, 14–29.

    Google Scholar 

  • Haydon, D. (2000). Maximally stable model ecosystems can be highly connected. Ecology, 81, 2631–2636.

    Google Scholar 

  • Heckmann, L., Drossel, B., Brose, U., et al. (2012). Interactive effects of body-size structure and adaptive foraging on food-web stability. Ecology Letters, 15, 243–250.

    Google Scholar 

  • Heleno, R., Devoto, M., & Pocock, M. (2012). Connectance of species interaction networks and conservation value: Is it any good to be well connected? Ecological Indicators, 14, 7–10.

    Google Scholar 

  • Herrera, C. M. (1985). Determinants of plant-animal coevolution: The case of mutualistic dispersal of seeds by vertebrates. Oikos, 44, 132–141.

    Google Scholar 

  • Hughes, J. B., & Roughgarden, J. (1998). Aggregate community properties and the strength of species’ interactions. Proceedings of the National Academy of Sciences of the United States of America, 95, 6837–6842.

    Google Scholar 

  • Hui, C., & Richardson, D. M. (2017). Invasion dynamics. Oxford University Press.

    Google Scholar 

  • Hui, C., Richardson, D. M., Landi, P., et al. (2016). Defining invasiveness and invasibility in ecological networks. Biological Invasions, 18, 971–983.

    Google Scholar 

  • Ingram, T., Harmon, L. J., & Shurin, J. B. (2009). Niche evolution, trophic structure, and species turnover in model food webs. American Naturalist, 174, 56–67.

    Google Scholar 

  • Ives, A. R., Klug, J. L., & Gross, K. (2000). Stability and species richness in complex communities. Ecology Letters, 3, 399–411.

    Google Scholar 

  • Jacquet, C., Moritz, C., Morissette, L., et al. (2016). No complexity-stability relationship in empirical ecosystems. Nature Communications, 7, 12573.

    Google Scholar 

  • James, A., Pitchford, J. W., & Plank, M. J. (2012). Disentangling nestedness from models of ecological complexity. Nature, 487, 227–230.

    Google Scholar 

  • Jordano, P. (1987). Patterns of mutualistic interactions in pollination and seed dispersal: Connectance, dependence asymmetries, and coevolution. American Naturalist, 129, 657–677.

    Google Scholar 

  • Jordano, P., Bascompte, J., & Olesen, J. M. (2003). Invariant properties in coevolutionary networks of plant animal interactions. Ecology Letters, 6, 69–81.

    Google Scholar 

  • Kaiser-Bunbury, C. N., & Blutghen, N. (2015). Integrating network ecology with applied conservation: A synthesis and guide to implementation. AoB Plants, 7, plv076.

    Google Scholar 

  • Kokkoris, G. D., Troumbis, A. Y., & Lawton, J. H. (1999). Patterns of species interaction strength in assembled theoretical competition communities. Ecology Letters, 2, 70–74.

    Google Scholar 

  • Kokkoris, G. D., Jansen, V. A. A., Loreau, M., et al. (2002). Variability in interaction strength and implications for biodiversity. Journal of Animal Ecology, 71, 362–371.

    Google Scholar 

  • Kondoh, M. (2003). Foraging adaptation and the relationship between food-web complexity and stability. Science, 299, 1388–1391.

    Google Scholar 

  • Kondoh, M. (2005). Is biodiversity maintained by food-web complexity? The adaptive food-web hypothesis. In Acquatic food webs: An ecosystem approach (pp. 130–142). Oxford University Press.

    Google Scholar 

  • Kondoh, M. (2006). Does foraging adaptation create the positive complexity-stability relationship in realistic food-web structure? Journal of Theoretical Biology, 238, 646–651.

    MathSciNet  Google Scholar 

  • Kondoh, M. (2007). Anti-predator defence and the complexity-stability relationship of food webs. Proceedings of the Royal Society of London B, 274, 1617–1624.

    Google Scholar 

  • Krause, A. E., Frank, K. A., Mason, D. M., et al. (2003). Compartments revealed in food-web structure. Nature, 426, 282–285.

    Google Scholar 

  • Landi, P., Dercole, F., & Rinaldi, S. (2013). Branching scenarios in eco-evolutionary prey-predator models. SIAM Journal on Applied Mathematics, 73, 1634–1658.

    MathSciNet  MATH  Google Scholar 

  • Landi, P., & Piccardi, C. (2014). Community analysis in directed networks: In-, out-, and pseudocommunities. Physical Review E, 89, 012814.

    Google Scholar 

  • Lawlor, L. R. (1978). Comment on randomly constructed model ecosystems. American Naturalist, 111, 445–447.

    Google Scholar 

  • Lawlor, L. R. (1980). Structure and stability in natural and randomly constructed competitive communities. American Naturalist, 116, 394–408.

    MathSciNet  Google Scholar 

  • Lehman, C. L., & Tilman, D. (2000). Biodiversity, stability, and productivity in competitive communities. American Naturalist, 156, 534–552.

    Google Scholar 

  • Logofet, D. O. (2005). Stronger-than-Lyapunov notions of matrix stability, or how “flowers” help solve problems in mathematical ecology. Linear Algebra and its Applications, 398, 75–100.

    MathSciNet  MATH  Google Scholar 

  • Loreau, M., & de Mazancourt, C. (2013). Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecology Letters, 16, 106–115.

    Google Scholar 

  • Lyapunov, A. M. (1992). The general problem of the stability of motion. London: Taylor & Francis.

    MATH  Google Scholar 

  • May, R. M. (1973). Stability and complexity in model ecosystems. Princeton University Press.

    Google Scholar 

  • MacArthur, R. H. (1955). Fluctuations of animal populations and a measure of community stability. Ecology, 36, 533–536.

    Google Scholar 

  • Martinez, N. D. (1992). Constant connectance in community food webs. American Naturalist, 139, 1208–1218.

    Google Scholar 

  • McCann, K., Hastings, A., & Huxel, G. R. (1998). Weak trophic interactions and the balance of nature. Nature, 395, 794–798.

    Google Scholar 

  • Martinez, N. D. (1994). Scale-dependent constraints on food-web structure. American Naturalist, 144, 935–953.

    Google Scholar 

  • Mello, M. A. R., Marquitti, V. M. D., Guimarães Jr., P. R., et al. (2011). The modularity of seed dispersal: Differences in structure and robustness between bat– and bird–fruit networks. Oecologia, 167, 131–140.

    Google Scholar 

  • Memmott, J. (1999). The structure of a plant-pollinator food web. Ecology Letters, 2, 276–280.

    Google Scholar 

  • Memmott, J., Waser, N. M., & Price, M. V. (2004). Tolerance of pollination networks to species extinctions. Proceedings of the Royal Society of London B, 271, 2605–2611.

    Google Scholar 

  • Memmot, J. (2009). Food webs: A ladder for picking strawberries or a practical tool for practical problems? Philosophical Transactions of the Royal Society of London B, 364, 1693–1699.

    Google Scholar 

  • Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Synthesis. Washington: Island Press.

    Google Scholar 

  • Minoarivelo, H. O., & Hui, C. (2016). Trait-mediated interaction leads to structural emergence in mutualistic networks. Evolutionary Ecology, 30, 105–121.

    Google Scholar 

  • Montoya, J. M., & Solé, R. V. (2002). Small world patterns in food webs. Journal of Theoretical Biology, 214, 405–4012.

    Google Scholar 

  • Moore, J. C., & Hunt, H. W. (1988). Resource compartmentation and the stability of real ecosystems. Nature, 333, 261–263.

    Google Scholar 

  • Neubert, M. G., & Caswell, H. (1997). Alternatives to resilience for measuring the responses of ecological systems to perturbations. Ecology, 78, 653–665.

    Google Scholar 

  • Neutel, A.-M., Heesterbeek, J. A. P., & de Ruiter, P. C. (2002). Stability in real food webs: Weak links in long loops. Science, 296, 1120–1123.

    Google Scholar 

  • Neutel, A.-M., Heesterbeek, J. A. P., van de Koppel, J., et al. (2007). Reconciling complexity with stability in naturally assembling food webs. Nature, 449, 599–603.

    Google Scholar 

  • Newman, M., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69, 026113.

    Google Scholar 

  • Nuwagaba, S., Zhang, F., & Hui, C. (2015). A hybrid behavioural rule of adaptation and drift explains the emergent architecture of antagonistic networks. Proceedings of the Royal Society of London B, 282, 20150320.

    Google Scholar 

  • Odum, E. P. (1953). Fundamentals of ecology. Philadelphia: Saunders.

    Google Scholar 

  • Okuyama, T. (2008). Do mutualistic networks follow power distributions? Ecological Complexity, 5, 59–65.

    Google Scholar 

  • Okuyama, T., & Holland, J. N. (2008). Network structural properties mediate the stability of mutualistic communities. Ecology Letters, 11, 208–216.

    Google Scholar 

  • Olesen, J. M., & Jordano, P. (2002). Geographic patterns in plant-pollinator mutualistic networks. Ecology, 83, 2416–2424.

    Google Scholar 

  • Olesen, J. M., Eskildsen, L. I., & Venkatasamy, S. (2002). Invasion of pollination networks on oceanic islands: Importance of invader complexes and endemic super generalists. Diversity and Distributions, 8, 181–192.

    Google Scholar 

  • Olesen, J. M., Bascompte, J., Dupont, Y. L., et al. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences of the United States of America, 104, 19891–19896.

    Google Scholar 

  • Olff, H., Alonso, D., Berg, M. P., et al. (2009). Parallel ecological networks in ecosystems. Philosophical Transactions of the Royal Society of London B, 364, 1755–1779.

    Google Scholar 

  • Olito, C., & Fox, J. W. (2014). Species traits and relative abundances predict metrics of plant-pollinator network structure, but not pairwise interactions. Oikos, 124, 428–436.

    Google Scholar 

  • Olivier, T. H., Leather, S. R., & Cook, J. M. (2009). Tolerance traits and the stability of mutualism. Oikos, 118, 346–352.

    Google Scholar 

  • Otto, S. B., Rall, B. C., & Brose, U. (2007). Allometric degree distributions facilitate food-web stability. Nature, 450, 1226–1229.

    Google Scholar 

  • Paine, R. T. (1992). Food-web analysis through field measurement of per capita interaction strength. Nature, 355, 73–75.

    Google Scholar 

  • Petanidou, T., Kallimanis, A. S., Tzanopoulos, J., et al. (2008). Long-term observation of a pollination network: Fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecology Letters, 11, 564–575.

    Google Scholar 

  • Pimm, S. L. (1979). Complexity and stability: Another look at MacArthur’s original hypothesis. Oikos, 33, 251–257.

    Google Scholar 

  • Pimm, S. L. (1980a). Properties of food webs. Ecology, 61, 219–225.

    Google Scholar 

  • Pimm, S. L. (1980b). Food web design and the effect of species deletion. Oikos, 35, 139–149.

    Google Scholar 

  • Pimm, S. L. (1984). The complexity and stability of ecosystems. Nature, 307, 321–326.

    Google Scholar 

  • Pimm, S. L., & Lawton, J. H. (1978). On feeding on more than one trophic level. Nature, 275, 542–544.

    Google Scholar 

  • Pimm, S. L., Lawton, J. H., & Cohen, J. E. (1991). Food web patterns and their consequences. Nature, 350, 669–674.

    Google Scholar 

  • Pocock, M. J. O., Evans, D. M., Fontaine, C., et al. (2016). The visualization of ecological networks, and their use as a tool for engagement, advocacy and management. Advances in Ecological Research, 54, 41–85.

    Google Scholar 

  • Poisot, T., & Gravel, D. (2014). When is an ecological network complex? Connectance drives degree distribution and emerging network properties. PeerJ, 2, e251.

    Google Scholar 

  • Polis, G. (1991). Complex trophic interactions in deserts: An empirical critique of food web theory. American Naturalist, 138, 123–155.

    Google Scholar 

  • Ramos-Jiliberto, R., Valdovinos, F. S., de Espanés, P. M., et al. (2012). Topological plasticity increases robustness of mutualistic networks. Journal of Animal Ecology, 81, 896–904.

    Google Scholar 

  • Rezende, E. L., Jordano, P., & Bascompte, J. (2007). Effects of phenotypic complementarity and phylogeny on the nested structure of mutualistic networks. Oikos, 116, 1919–1929.

    Google Scholar 

  • Rinaldi, S., Della Rossa, F., Dercole, F., et al. (2015). Modeling love dynamics. Singapore: World Scientific.

    Google Scholar 

  • Rohr, R. P., Saavedra, S., & Bascompte, J. (2014). On the structural stability of mutualistic systems. Science, 345, 1253497.

    Google Scholar 

  • Rosvall, M., & Bergstrom, C. T. (2007). An information-theoretic framework for resolving community structure in complex networks. Proceedings of the National Academy of Sciences of the United States of America, 104, 7327–7331.

    Google Scholar 

  • Rooney, N., McCann, K., Gellner, G., et al. (2006). Structural asymmetry and the stability of diverse food webs. Nature, 444, 265–269.

    Google Scholar 

  • Saint-Béat, B., Baird, D., Asmus, H., et al. (2015). Trophic networks: How do theories link ecosystem structure and functioning to stability properties? A review. Ecological Indicators, 52, 458–471.

    Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. AT&T Technology Journal, 27, 379–342.

    MathSciNet  MATH  Google Scholar 

  • Schoener, T. W. (1989). Food webs from the small to the large. Ecology, 70, 1559–1589.

    Google Scholar 

  • Small, M., Judd, K., & Stemler, T. (2013). The stability of networks—Towards a structural dynamical systems theory. ArXiv.

    Google Scholar 

  • Solé, R. V., & Montoya, J. (2001). Complexity and fragility in ecological networks. Proceedings of the Royal Society of London B, 268, 2039–2045.

    Google Scholar 

  • Song, Z., & Fledman, M. W. (2014). Adaptive foraging behaviour of individual pollinators and the coexistence of co-flowering plants. Proceedings of the Royal Society of London B, 281, 20132437.

    Google Scholar 

  • Sprules, W. G., & Bowerman, J. E. (1988). Omnivory and food chain length in zooplankton food webs. Ecology, 69, 418–426.

    Google Scholar 

  • Strona, G., & Lafferty, K. D. (2016). Environmental change makes robust ecological networks fragile. Nature Communications, 7, 12462.

    Google Scholar 

  • Stouffer, D. B., & Bascompte, J. (2011). Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences of the United States of America, 108, 3648–3652.

    Google Scholar 

  • Suweis, S., Grilli, J., Banavar, J. R., et al. (2015). Effect of localization on the stability of mutualistic ecological networks. Nature Communications, 6, 10179.

    Google Scholar 

  • Thébault, E., & Fontaine, C. (2010). Stability of ecological communities and the architecture of mutualistic and trophic interactions. Science, 329, 853–856.

    Google Scholar 

  • Tylianakis, J. M., Tscharntke, T., & Lewis, O. T. (2007). Habitat modification alters the structure of tropical host-parasitoid food webs. Nature, 445, 202–205.

    Google Scholar 

  • Tylianakis, J. M., Laliberte, E., Nielsen, A., et al. (2010). Conservation of species interaction networks. Biological Conservation, 143, 2270–2279.

    Google Scholar 

  • Valdovinos, F. S., de Espanés, P. M., Flores, J. D., et al. (2013). Adaptive foraging allows the maintenance of biodiversity of pollination networks. Oikos, 122, 907–917.

    Google Scholar 

  • Valdovinos, F. S., Ramos-Jiliberto, R., Garay-Narvaez, L., et al. (2010). Consequences of adaptive behaviour for the structure and dynamics of food webs. Ecology Letters, 13, 1546–1559.

    Google Scholar 

  • van Altena, C., Hemerik, L., & de Ruiter, P. C. (2016). Food web stability and weighted connectance: The complexity stability debate revisited. Theoretical Ecology, 9, 49–58.

    Google Scholar 

  • Vázquez, D. P., & Aizen, M. A. (2003). Null model analyses of specialization in plant–pollinator interactions. Ecology, 84, 2493–2501.

    Google Scholar 

  • Vieira, M. C., & Almeida-Neto, M. (2015). A simple stochastic model for complex coextinctions in mutualistic networks: Robustness decreases with connectance. Ecology Letters, 18, 144–152.

    Google Scholar 

  • Visser, A. W., Mariani, P., & Pigolotti, S. (2012). Adaptive behaviour, tri-trophic food-web stability and damping of chaos. Journal of the Royal Society, Interface, 9, 1373–1380.

    Google Scholar 

  • Waser, N. M., Chittka, L., Price, M. V., et al. (1996). Generalization in pollination systems, and why it Matters. Ecology, 77, 1043–1060.

    Google Scholar 

  • West, S. A., Kiers, E. T., Pen, I., et al. (2002). Sanctions and mutualism stability: When should less beneficial mutualists be tolerated? Journal of Evolutionary Biology, 15, 830–837.

    Google Scholar 

  • Williams, R. J., & Martinez, N. D. (2000). Simple rules yield complex food web. Nature, 404, 180–183.

    Google Scholar 

  • Wheelwright, N. T., & Orians, G. H. (1982). Seed dispersal by animals: Contrasts with pollen dispersal, problems of terminology, and constraints on coevolution. American Naturalist, 119, 402–413.

    Google Scholar 

  • Wolanski, E., & McLusky, D. (Eds.). (2011). Treatise on estuarine and coastal science. Amsterdam: Elsevier.

    Google Scholar 

  • Wootton, J. T., & Emmerson, M. (2005). Measurement of interaction strength in nature. Annual Reviews of Ecology and Systematics, 36, 419–444.

    Google Scholar 

  • Yodzis, P. (1981). The stability of real ecosystems. Nature, 289, 674–676.

    Google Scholar 

  • Zhang, F., Hui, C., & Terblanche, J. S. (2011). An interaction switch predicts the nested architecture of mutualistic networks. Ecology Letters, 14, 797–803.

    Google Scholar 

  • Zhang, F., Hui, C., & Pauw, A. (2013). Adaptive divergence in Darwin’s race: how coevolution can generate trait diversity in a pollination system. Evolution, 67, 548–560.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Research Foundation (NRF) of South Africa and the International Institute for Applied Systems Analysis (IIASA) for organizing the Southern African Young Scientist Summer Program (SA-YSSP). The contribution of two anonymous reviewers is acknowledged. This chapter is based on a review paper by the same authors submitted to Population Ecology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Landi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Landi, P., Minoarivelo, H.O., Brännström, Å., Hui, C., Dieckmann, U. (2018). Complexity and Stability of Adaptive Ecological Networks: A Survey of the Theory in Community Ecology. In: Mensah, P., Katerere, D., Hachigonta, S., Roodt, A. (eds) Systems Analysis Approach for Complex Global Challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-71486-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71486-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71485-1

  • Online ISBN: 978-3-319-71486-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics