Advertisement

Penalty-Free Nitsche Method for Interface Problems

  • Thomas Boiveau
  • Erik Burman
  • Susanne Claus
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 121)

Abstract

Nitsche’s method is a penalty-based method to weakly enforce boundary conditions in the finite element method. In this paper, we present a penalty free version of Nitsche’s method to impose interface coupling in the framework of unfitted domain decomposition. Unfitted domain decomposition is understood in the sense that the interface between the domains can cross elements of the mesh arbitrarily. The pure diffusion problem with discontinuous material parameters is considered for the theoretical study, we show the convergence of the L2 and H1-error for high contrast in the diffusivities. Then, we give the corresponding numerical results for the pure diffusion problem, additionally we consider the Stokes problem. We compare the performance of the penalty free method with the more classical symmetric and nonsymmetric Nitsche’s methods for different cases, including for the error generated in the interface fluxes.

Notes

Acknowledgements

This work received funding from EPSRC (award number EP/J002313/2) which is gratefully acknowledged. The Author, S. Claus, gratefully acknowledges the financial support provided by the Welsh Government and Higher Education Funding Council for Wales through the Sêr Cymru National Research Network in Advanced Engineering and Materials.

References

  1. 1.
    Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982). http://dx.doi.org/10.1137/0719052
  2. 2.
    Babuška, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192 (1972/73)Google Scholar
  3. 3.
    Becker, R., Hansbo, P., Stenberg, R.: A finite element method for domain decomposition with non-matching grids. M2AN Math. Model. Numer. Anal. 37(2), 209–225 (2003). http://dx.doi.org/10.1051/m2an:2003023
  4. 4.
    Boiveau, T.: Penalty-free Nitsche method for interface problems in computational mechanics. Ph.D. thesis, University College London (2016)Google Scholar
  5. 5.
    Boiveau, T., Burman, E.: A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity. IMA J. Numer. Anal. 36(2), 770–795 (2016).  http://dx.doi.org/10.1093/imanum/drv042
  6. 6.
    Boiveau, T., Burman, E., Claus, S., Larson, M.G.: Fictitious domain method with boundary value correction using penalty-free Nitsche method (2016). https://arxiv.org/abs/1610.04482
  7. 7.
    Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. ESAIM: Math. Model. Numer. Anal. (Modélisation Mathématique et Analyse Numérique) 8(R2), 129–151 (1974). http://eudml.org/doc/193255
  8. 8.
    Burman, E.: A penalty free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions. SIAM J. Numer. Anal. 50(4), 1959–1981 (2012). http://dx.doi.org/10.1137/10081784X MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Burman, E.: Ghost penalty. C. R. Math. Acad. Sci. Paris 348(21–22), 1217–1220 (2010). http://dx.doi.org/10.1016/j.crma.2010.10.006 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chu, C.C., Graham, I.G., Hou, T.Y.: A new multiscale finite element method for high-contrast elliptic interface problems. Math. Comput. 79(272), 1915–1955 (2010). http://dx.doi.org/10.1090/S0025-5718-2010-02372-5 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Freund, J., Stenberg, R.: On weakly imposed boundary conditions for second order problems. In: Proceedings of the Ninth International Conference on Finite Elements in Fluids, pp. 327–336. Università di Padova, Padova (1995)Google Scholar
  12. 12.
    Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191(47–48), 5537–5552 (2002). http://dx.doi.org/10.1016/S0045-7825(02)00524-8 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hansbo, A., Hansbo, P., Larson, M.G.: A finite element method on composite grids based on Nitsche’s method. M2AN Math. Model. Numer. Anal. 37(3), 495–514 (2003). http://dx.doi.org/10.1051/m2an:2003039
  14. 14.
    Hansbo, P.: Nitsche’s method for interface problems in computational mechanics. GAMM-Mitt. 28(2), 183–206 (2005).  http://dx.doi.org/10.1002/gamm.201490018 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hansbo, P., Larson, M.G., Zahedi, S.: A cut finite element method for a Stokes interface problem. Appl. Numer. Math. 85(0), 90–114 (2014). http://dx.doi.org/10.1016/j.apnum.2014.06.009. http://www.sciencedirect.com/science/article/pii/S0168927414001184
  16. 16.
    Hansbo, P., Lovadina, C., Perugia, I., Sangalli, G.: A Lagrange multiplier method for elliptic interface problems using non-matching meshes. In: Applied and Industrial Mathematics in Italy, Series on Advances in Mathematics for Applied Sciences, vol. 69, pp. 360–370. World Scientific, Hackensack (2005). http://dx.doi.org/10.1142/9789812701817_0033
  17. 17.
    Hughes, T.J.R., Engel, G., Mazzei, L., Larson, M.G.: A comparison of discontinuous and continuous Galerkin methods based on error estimates, conservation, robustness and efficiency. In: Discontinuous Galerkin Methods (Newport, RI, 1999), Lecture Notes in Computational Science and Engineering, vol. 11, pp. 135–146. Springer, Berlin (2000). http://dx.doi.org/10.1007/978-3-642-59721-3_9
  18. 18.
    Kirchhart, M., Gross, S., Reusken, A.: Analysis of an xfem discretization for Stokes interface problems. Preprint 420Google Scholar
  19. 19.
    Larson, M.G., Massing, A.: L2-error estimates for finite element approximations of boundary fluxes. arXiv preprint arXiv:1401.6994 (2014)Google Scholar
  20. 20.
    Massing, A., Larson, M.G., Logg, A., Rognes, M.E.: A stabilized Nitsche fictitious domain method for the stokes problem. J. Sci. Comput. 61(3), 604–628 (2014). http://dx.doi.org/10.1007/s10915-014-9838-9 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Nitsche, J.: Über ein variationsprinzip zur lösung von Dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind. Abh. Math. Semin. Univ. Hambg. 36(1), 9–15 (1971). http://dx.doi.org/10.1007/BF02995904 CrossRefzbMATHGoogle Scholar
  22. 22.
    Pitkäranta, J.: Boundary subspaces for the finite element method with Lagrange multipliers. Numer. Math. 33(3), 273–289 (1979). http://dx.doi.org/10.1007/BF01398644 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Pitkäranta, J.: Local stability conditions for the Babuška method of Lagrange multipliers. Math. Comput. 35(152), 1113–1129 (1980). http://dx.doi.org/10.2307/2006378 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Stenberg, R.: On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63(1–3), 139–148 (1995). http://dx.doi.org/10.1016/0377-0427(95)00057-7. International Symposium on Mathematical Modelling and Computational Methods Modelling 94 (Prague, 1994)

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Université Paris-EstCERMICS (ENPC)Marne-la-Vallée 2France
  2. 2.Inria ParisParisFrance
  3. 3.Department of MathematicsUniversity College LondonLondonUK
  4. 4.Cardiff School of EngineeringCardiff UniversityCardiffUK

Personalised recommendations