Skip to main content

An Overview of Recent Results on Nitsche’s Method for Contact Problems

  • Conference paper
  • First Online:
Geometrically Unfitted Finite Element Methods and Applications

Abstract

We summarize recent achievements in applying Nitsche’s method to some contact and friction problems. We recall the setting of Nitsche’s method in the case of unilateral contact with Tresca friction in linear elasticity. Main results of the numerical analysis are detailed: consistency, well-posedness, fully optimal convergence in H 1(Ω)-norm, residual-based a posteriori error estimation. Some numerics and some recent extensions to multi-body contact, contact in large transformations and contact in elastodynamics are presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    see www.getfem.org.

References

  1. Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York (1975)

    Google Scholar 

  2. Alart, P., Curnier, A.: A generalized Newton method for contact problems with friction. J. Mec. Theor. Appl. 7(1), 67–82 (1988)

    Google Scholar 

  3. Annavarapu, C., Settgast, R.R., Johnson, S.M., Fu, P., Herbold, E.B.: A weighted Nitsche stabilized method for small-sliding contact on frictional surfaces. Comput. Methods Appl. Mech. Eng. 283, 763–781 (2015). https://doi.org/10.1016/j.cma.2014.09.030

  4. Armero, F., Petőcz, E.: Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput. Methods Appl. Mech. Eng. 158(3–4), 269–300 (1998). https://doi.org/10.1016/S0045-7825(97)00256-9

  5. Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Google Scholar 

  6. Ballard, P.: Steady sliding frictional contact problems in linear elasticity. J. Elasticity 110(1), 33–61 (2013). https://doi.org/10.1007/s10659-012-9381-6

  7. Barbosa, H.J.C., Hughes, T.J.R.: Circumventing the Babu \(\check {s}\)ka-Brezzi condition in mixed finite element approximations of elliptic variational inequalities. Comput. Methods Appl. Mech. Eng. 97(2), 193–210 (1992). https://doi.org/10.1016/0045-7825(92)90163-E

  8. Becker, R., Hansbo, P., Stenberg, R.: A finite element method for domain decomposition with non-matching grids. M2AN Math. Model. Numer. Anal. 37(2), 209–225 (2003)

    Google Scholar 

  9. Ben Belgacem, F.: Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element methods. SIAM J. Numer. Anal. 37(4), 1198–1216 (2000). https://doi.org/10.1137/S0036142998347966

  10. Ben Belgacem, F., Renard, Y.: Hybrid finite element methods for the Signorini problem. Math. Comput. 72(243), 1117–1145 (2003). https://doi.org/10.1090/S0025-5718-03-01490-X

  11. Boiveau, T., Burman, E.: A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity. IMA J. Numer. Anal. 36(2), 770–795 (2016). https://doi.org/10.1093/imanum/drv042

  12. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15. Springer, New York (2007)

    Google Scholar 

  13. Brezis, H.: Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier (Grenoble) 18(fasc. 1), 115–175 (1968)

    Google Scholar 

  14. Burman, E.: A penalty-free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions. SIAM J. Numer. Anal. 50(4), 1959–1981 (2012). https://doi.org/10.1137/10081784X

  15. Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche’s method. Comput. Methods Appl. Mech. Eng. 2(4), 328–341 (2012)

    Google Scholar 

  16. Burman, E., Hansbo, P.: Deriving robust unfitted finite element methods from augmented lagrangian formulations. arXiv preprint arXiv:1702.08340 (2017)

    Google Scholar 

  17. Burman, E., Hansbo, P., Larson, M.G.: Augmented Lagrangian finite element methods for contact problems. arXiv preprint arXiv:1609.03326 (2016)

    Google Scholar 

  18. Burman, E., Hansbo, P., Larson, M.G.: The penalty free Nitsche method and nonconforming finite elements for the Signorini problem. SIAM J. Numer. Anal. 55(6), 2523–2539 (2016). http://epubs.siam.org/doi/abs/10.1137/16M107846X

  19. Burman, E., Hansbo, P., Larson, M.G., Stenberg, R.: Galerkin least squares finite element method for the obstacle problem. Comput. Meth. Appl. Mech. Eng. 313, 362–374 (2017)

    Google Scholar 

  20. Chernov A. Maischak, M., Stephan, E.: A priori error estimates for hp penalty BEM for contact problems in elasticity. Comput. Methods Appl. Mech. Eng. 196, 3871–3880 (2007)

    Google Scholar 

  21. Chouly, F.: An adaptation of Nitsche’s method to the Tresca friction problem. J. Math. Anal. Appl. 411(1), 329–339 (2014). https://doi.org/10.1016/j.jmaa.2013.09.019

  22. Chouly, F., Hild, P.: A Nitsche-based method for unilateral contact problems: numerical analysis. SIAM J. Numer. Anal. 51(2), 1295–1307 (2013). https://doi.org/10.1137/12088344X

  23. Chouly, F., Hild, P.: On convergence of the penalty method for unilateral contact problems. Appl. Numer. Math. 65, 27–40 (2013) https://doi.org/10.1016/j.apnum.2012.10.003

  24. Chouly, F., Fabre, M., Hild, P., Pousin, J., Renard, Y.: Residual-based a posteriori error estimation for contact problems approximated by Nitsche’s method. IMA J. Numer. Anal. https://doi.org/10.1093/imanum/drx024

  25. Chouly, F., Hild, P., Renard, Y.: A Nitsche finite element method for dynamic contact: 1. Space semi-discretization and time-marching schemes. ESAIM Math. Model. Numer. Anal. 49(2), 481–502 (2015). https://doi.org/10.1051/m2an/2014041

  26. Chouly, F., Hild, P., Renard, Y.: A Nitsche finite element method for dynamic contact: 2. Stability of the schemes and numerical experiments. ESAIM Math. Model. Numer. Anal. 49(2), 503–528 (2015). https://doi.org/10.1051/m2an/2014046

  27. Chouly, F., Hild, P., Renard, Y.: Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: theory and numerical experiments. Math. Comput. 84(293), 1089–1112 (2015). https://doi.org/10.1090/S0025-5718-2014-02913-X

  28. Chouly, F., Mlika, R., Renard, Y.: An unbiased Nitsche’s approximation of the frictional contact between two elastic structures. Numer. Math. (2015, to appear). https://hal.archives-ouvertes.fr/hal-01240068

  29. Chouly, F., Hild, P., Renard, Y.: Nitsche method for dynamic contact with Coulomb friction (In preparation)

    Google Scholar 

  30. Ciarlet, P.G.: The finite element method for elliptic problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. II. North-Holland Publishing Co., Amsterdam (1991)

    Google Scholar 

  31. Dabaghi, F., Petrov, A., Pousin, J., Renard, Y.: Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary. M2AN Math. Model. Numer. Anal. 48, 1147–1169 (2014). http://www.esaim-m2an.org/article_S0764583X13001337

  32. Dabaghi, F., Petrov, A., Pousin, J., Renard, Y.: A robust finite element redistribution approach for elastodynamic contact problems. Appl. Numer. Math. 103, 48–71 (2016). https://doi.org/10.1016/j.apnum.2015.12.004

  33. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-22980-0

  34. Doyen, D., Ern, A., Piperno, S.: Time-integration schemes for the finite element dynamic Signorini problem. SIAM J. Sci. Comput. 33(1), 223–249 (2011). https://doi.org/10.1137/100791440

  35. Drouet, G., Hild, P.: Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set. SIAM J. Numer. Anal. 53(3), 1488–1507 (2015). https://doi.org/10.1137/140980697

  36. Duvaut, G., Lions, J.L.: Les inéquations en mécanique et en physique. Travaux et Recherches Mathématiques, vol. 21. Dunod, Paris (1972)

    Google Scholar 

  37. Eck, C., Jaru \(\check {s}\)ek, J., Krbec, M.: Unilateral contact problems. Pure and Applied Mathematics (Boca Raton), vol. 270. Chapman & Hall/CRC, Boca Raton, FL (2005). https://doi.org/10.1201/9781420027365

  38. Ern, A., Guermond, J.L.: Theory and practice of finite elements. In: Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    Google Scholar 

  39. Fabre, M., Pousin, J., Renard, Y.: A fictitious domain method for frictionless contact problems in elasticity using Nitsche’s method. SMAI J. Comput. Math. 2, 19–50 (2016)

    Google Scholar 

  40. Fichera, G.: Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8) 7, 91–140 (1963/1964)

    Google Scholar 

  41. Galántai, A.: Properties and construction of NCP functions. Comput. Optim. Appl. 52(3), 805–824 (2012). https://doi.org/10.1007/s10589-011-9428-9

  42. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer Series in Computational Physics. Springer, New York (1984). https://doi.org/10.1007/978-3-662-12613-4

  43. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM Studies in Applied Mathematics, vol. 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1989)

    Google Scholar 

  44. Gonzalez, O.: Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Comput. Methods Appl. Mech. Eng. 190(13–14), 1763–1783 (2000). https://doi.org/10.1016/S0045-7825(00)00189-4

  45. Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. AMS/IP Studies in Advanced Mathematics, vol. 30. American Mathematical Society, Providence, RI (2002)

    Google Scholar 

  46. Hansbo, P.: Nitsche’s method for interface problems in computational mechanics. GAMM-Mitt. 28(2), 183–206 (2005)

    Google Scholar 

  47. Hansbo, A., Hansbo, P.: A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 193(33–35), 3523–3540 (2004). https://doi.org/10.1016/j.cma.2003.12.041

  48. Hansbo, P., Rashid, A., Salomonsson, K.: Least-squares stabilized augmented Lagrangian multiplier method for elastic contact. Finite Elem. Anal. Des. 116, 32–37 (2016). https://doi.org/10.1016/j.finel.2016.03.005

  49. Haslinger, J.: Finite element analysis for unilateral problems with obstacles on the boundary. Appl. Math. 22(3), 180–188 (1977)

    Google Scholar 

  50. Haslinger, J., Hlavá \(\check {c}\)ek, I.: Approximation of the Signorini problem with friction by a mixed finite element method. J. Math. Anal. Appl. 86(1), 99–122 (1982). https://doi.org/10.1016/0022-247X(82)90257-8

  51. Haslinger, J., Renard, Y.: A new fictitious domain approach inspired by the extended finite element method. SIAM J. Numer. Anal. 47(2), 1474–1499 (2009). https://doi.org/10.1137/070704435

  52. Haslinger, J., Hlavá \(\check {c}\)ek, I., Ne \(\check {c}\)as, J.: Numerical methods for unilateral problems in solid mechanics. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. IV. North-Holland Publishing Co., Amsterdam (1996)

    Google Scholar 

  53. Hauret, P., Le Tallec, P.: Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact. Comput. Methods Appl. Mech. Eng. 195(37–40), 4890–4916 (2006). https://doi.org/10.1016/j.cma.2005.11.005

  54. Heintz, P., Hansbo, P.: Stabilized Lagrange multiplier methods for bilateral elastic contact with friction. Comput. Methods Appl. Mech. Eng. 195(33–36), 4323–4333 (2006). https://doi.org/10.1016/j.cma.2005.09.008

  55. Hild, P.: Numerical implementation of two nonconforming finite element methods for unilateral contact. Comput. Methods Appl. Mech. Eng. 184(1), 99–123 (2000). https://doi.org/10.1016/S0045-7825(99)00096-1

  56. Hild, P., Lleras, V.: Residual error estimators for Coulomb friction. SIAM J. Numer. Anal. 47(5), 3550–3583 (2009). https://doi.org/10.1137/070711554

  57. Hild, P., Nicaise, S.: Residual a posteriori error estimators for contact problems in elasticity. M2AN Math. Model. Numer. Anal. 41(5), 897–923 (2007). https://doi.org/10.1051/m2an:2007045

  58. Hild, P., Renard, Y.: A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics. Numer. Math. 115(1), 101–129 (2010). https://doi.org/10.1007/s00211-009-0273-z

  59. Hild, P., Renard, Y.: An improved a priori error analysis for finite element approximations of Signorini’s problem. SIAM J. Numer. Anal. 50(5), 2400–2419 (2012). https://doi.org/10.1137/110857593

  60. Hüeber, S., Wohlmuth, B.I.: An optimal a priori error estimate for nonlinear multibody contact problems. SIAM J. Numer. Anal. 43(1), 156–173 (2005). https://doi.org/10.1137/S0036142903436678

  61. Juntunen, M.: On the connection between the stabilized Lagrange multiplier and Nitsche’s methods. Numer. Math. 131(3), 453–471 (2015). https://doi.org/10.1007/s00211-015-0701-1

  62. Juntunen, M., Stenberg, R.: Nitsche’s method for general boundary conditions. Math. Comput. 78(267), 1353–1374 (2009). https://doi.org/10.1090/S0025-5718-08-02183-2

  63. Khenous, H.B., Laborde, P., Renard, Y.: Mass redistribution method for finite element contact problems in elastodynamics. Eur. J. Mech. A Solids 27(5), 918–932 (2008). https://doi.org/10.1016/j.euromechsol.2008.01.001

  64. Kikuchi, N., Oden, J.T.: Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM Studies in Applied Mathematics, vol. 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988)

    Google Scholar 

  65. Kikuchi, N., Song, Y.J.: Penalty-finite-element approximation of a class of unilateral problems in linear elasticity. Quart. Appl. Math. 39, 1–22 (1981)

    Google Scholar 

  66. Kim, J.U.: A boundary thin obstacle problem for a wave equation. Commun. Partial Differ. Equ. 14(8–9), 1011–1026 (1989). https://doi.org/10.1080/03605308908820640

  67. Laborde, P., Renard, Y.: Fixed point strategies for elastostatic frictional contact problems. Math. Methods Appl. Sci. 31(4), 415–441 (2008). https://doi.org/10.1002/mma.921

  68. Laursen, T.A.: Computational Contact and Impact Mechanics. Springer, Berlin (2002)

    Google Scholar 

  69. Laursen, T.A., Chawla, V.: Design of energy conserving algorithms for frictionless dynamic contact problems. Int. J. Numer. Methods Eng. 40(5), 863–886 (1997). https://doi.org/10.1002/(SICI)1097-0207(19970315)40:5<863::AID-NME92>3.0.CO;2-V

  70. Lebeau, G., Schatzman, M.: A wave problem in a half-space with a unilateral constraint at the boundary. J. Differ. Equ. 53(3), 309–361 (1984). https://doi.org/10.1016/0022-0396(84)90030-5

  71. Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969)

    Google Scholar 

  72. Lleras, V.: Modélisation, analyse et simulation de problèmes de contact en mécanique des solides et des fluides. Ph.D. thesis, Besançon (2009)

    Google Scholar 

  73. Lüthen, N., Juntunen, M., Stenberg, R.: An improved a priori error analysis of Nitsche’s method for Robin boundary conditions. arXiv preprint arXiv:1502.06515 (2015)

    Google Scholar 

  74. Mlika, R., Renard, Y., Chouly, F.: An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact. Comput. Methods Appl. Mech. Eng. 325, 265–288 (2017). https://hal.archives-ouvertes.fr/hal-01427872

  75. Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. In: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 36, pp. 9–15 (1971)

    Google Scholar 

  76. Oden, J.T.: Penalty-finite-element methods for constrained problems in elasticity. In: Symposium on Finite Element Methods, pp. 1–22 (1981). https://www.ices.utexas.edu/sites/oden/wp-content/uploads/2013/06/1981-008.penalty-finite_element.pdf

  77. Oden, J.T., Kikuchi, N.: Finite element methods for constrained problems in elasticity. Int. J. Numer. Methods Eng. 18, 701–725 (1982)

    Google Scholar 

  78. Oden, J.T., Kim, S.J.: Interior penalty methods for finite element approximations of the Signorini problem in elastostatics. Comput. Math. Appl. 8(1), 35–56 (1982). https://doi.org/10.1016/0898-1221(82)90038-4

  79. Pipping, E., Sander, O., Kornhuber, R.: Variational formulation of rate- and state-dependent friction problems. ZAMM Z. Angew. Math. Mech. 95(4), 377–395 (2015). https://doi.org/10.1002/zamm.201300062

  80. Poulios, K., Renard, Y.: An unconstrained integral approximation of large sliding frictional contact between deformable solids. Comput. Struct. 153, 75–90 (2015)

    Google Scholar 

  81. Renard, Y.: Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity. Comput. Methods Appl. Mech. Eng. 256, 38–55 (2012)

    Google Scholar 

  82. Renard, Y.: Approximation des conditions de contact en élastostatique: méthode de Nitsche et lien avec le lagrangien augmenté proximal. In: Proceedings of the Besançon Week on Numerical Analysis (2015)

    Google Scholar 

  83. Sauer, R.A., De Lorenzis, L.: An unbiased computational contact formulation for 3D friction. Int. J. Numer. Methods Eng. 101(4), 251–280 (2015). https://doi.org/10.1002/nme.4794

    Article  MathSciNet  MATH  Google Scholar 

  84. Scarpini, F., Vivaldi, M.A.: Error estimates for the approximation of some unilateral problems. RAIRO Anal. Numér. 11(2), 197–208 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  85. Stenberg, R.: On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63(1–3), 139–148 (1995). https://doi.org/10.1016/0377-0427(95)00057-7

    Article  MathSciNet  MATH  Google Scholar 

  86. Thomée, V.: Galerkin finite element methods for parabolic problems. Springer Series in Computational Mathematics, vol. 25. Springer, Berlin (1997)

    Google Scholar 

  87. Verfürth, R.: A review of a posteriori error estimation techniques for elasticity problems. Comput. Methods Appl. Mech. Eng. 176(1–4), 419–440 (1999). https://doi.org/10.1016/S0045-7825(98)00347-8

    Article  MathSciNet  MATH  Google Scholar 

  88. Wohlmuth, B.I.: A residual based error estimator for mortar finite element discretizations. Numer. Math. 84(1), 143–171 (1999). https://doi.org/10.1007/s002110050467

    Article  MathSciNet  MATH  Google Scholar 

  89. Wohlmuth, B.I.: Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer. 20, 569–734 (2011). https://doi.org/10.1017/S0962492911000079

    Article  MathSciNet  MATH  Google Scholar 

  90. Wriggers, P.: Computational Contact Mechanics. Wiley, London (2002)

    MATH  Google Scholar 

  91. Wriggers, P., Zavarise, G.: A formulation for frictionless contact problems using a weak form introduced by Nitsche. Comput. Mech. 41, 407–420 (2008). https://doi.org/10.1007/s00466-007-0196-4

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Erik Burman, the editorial board and Springer for the invitation to write this paper for their special volume. Moreover they thank the two anonymous referees for their constructive comments that helped to improve the paper. They thank also Thomas Boiveau and Susanne Claus for the GUFEM meeting and discussions. The first author thanks Région Bourgogne Franche-Comté for partial funding (“Convention Région 2015C-4991. Modèles mathématiques et méthodes numériques pour l’élasticité non-linéaire”), as well as Erik Burman and Miguel A. Fernández for some inspiring discussions on Nitsche’s method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Chouly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chouly, F., Fabre, M., Hild, P., Mlika, R., Pousin, J., Renard, Y. (2017). An Overview of Recent Results on Nitsche’s Method for Contact Problems. In: Bordas, S., Burman, E., Larson, M., Olshanskii, M. (eds) Geometrically Unfitted Finite Element Methods and Applications. Lecture Notes in Computational Science and Engineering, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-319-71431-8_4

Download citation

Publish with us

Policies and ethics