Advertisement

Well Conditioned Extended Finite Elements and Vector Level Sets for Three-Dimensional Crack Propagation

  • Konstantinos Agathos
  • Giulio Ventura
  • Eleni Chatzi
  • Stéphane P. A. Bordas
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 121)

Abstract

A stable extended finite element method (XFEM) is combined to a three dimensional version of the vector level set method (Ventura et al., Int. J. Numer. Methods Eng. 58(10):1571–1592, 2003) to solve non-planar three-dimensional (3D) crack propagation problems.

The proposed XFEM variant is based on an extension of the degree of freedom gathering technique (Laborde et al., Int. J. Numer. Methods Eng. 64(3):354–381, 2005; Agathos et al., Int. J. Numer. Methods Eng. 105(9):643–677, 2016) which allows the use of geometrical enrichment in 3D without conditioning problems. The method is also combined to weight function blending and enrichment function shifting (Fries, Int. J. Numer. Methods Eng. 75(November 2007):503–532, 2008; Ventura et al. Int. J. Numer. Methods Eng. 77(July 2008):1–29, 2009) in order to remove blending errors and further improve conditioning. The improved conditioning results in a decrease in the number of iterations required to solve the resulting linear systems which for the cases studied ranges from 50% up to several orders of magnitude.

The propagating crack is represented using a 3D version of the level set method (Ventura et al., Int. J. Numer. Methods Eng. 58(10):1571–1592, 2003). In this method at any propagation step, the crack front is represented as an ordered series of line segments and the crack surface as a sequence of four sided bilinear surfaces. Level set functions are obtained by projecting points on those surfaces and line segments thus employing only geometrical operations and avoiding the solution of differential evolution equations.

The combination of the aforementioned methods is able to handle crack propagation problems providing improved accuracy, reduced computational cost and simplified implementation.

Notes

Acknowledgements

Stéphane P.A. Bordas thanks the financial support of the European Research Council Starting Independent Research Grant (ERC Stg grant agreement No. 279578) entitled “Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery.”

Stéphane P.A. Bordas is also grateful for the support of the Fonds National de la Recherche Luxembourg FWO-FNR grant INTER/FWO/15/10318764.

References

  1. 1.
    Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals. Elsevier, Amsterdam (2013)zbMATHGoogle Scholar
  2. 2.
    Melenk, J.M., Babuska, I: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139(1–4), 289–314 (1996)Google Scholar
  3. 3.
    Strouboulis, T., Babuška, I., Copps, K.: The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 181(1), 43–69 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 620(July 1998), 601–620 (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)CrossRefzbMATHGoogle Scholar
  6. 6.
    Duarte, C.A., Hamzeh, O.N., Liszka, T.J., Tworzydlo, W.W.: A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Comput. Methods Appl. Mech. Eng. 190(15), 2227–2262 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Sukumar, N., Chopp, D.L., Moës, N., Belytschko, T.: Modeling holes and inclusions by level sets in the extended finite-element method. Comput. Methods Appl. Mech. Eng. 190(46), 6183–6200 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Belytschko, T., Gracie, R.: On XFEM applications to dislocations and interfaces. Int. J. Plast. 23(10), 1721–1738 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Sukumar, N., Moës, N., Moran, B., Belytschko, T.: Extended finite element method for three-dimensional crack modelling. Int. J. Numer. Methods Eng. 48(November 1999), 1549–1570 (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Huang, R., Sukumar, N., Prévost, J.H.: Modeling quasi-static crack growth with the extended finite element method part ii: numerical applications. Int. J. Solids Struct. 40(26), 7539–7552 (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Belytschko, T., Chen, H., Xu, J., Zi, G.: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int. J. Numer. Methods Eng. 58(12), 1873–1905 (2003)CrossRefzbMATHGoogle Scholar
  12. 12.
    Moës, N., Gravouil, A., Belytschko, T.: Non-planar 3D crack growth by the extended finite element and level sets-Part I: Mechanical model. Int. J. Numer. Methods Eng. 53(11), 2549–2568 (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Gravouil, A., Moës, N., Belytschko, T.: Non-planar 3D crack growth by the extended finite element and level sets-Part II: level set update. Int. J. Numer. Methods Eng. 53(11), 2569–2586 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Moës, N., Belytschko, T.: Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69(7), 813–833 (2002)CrossRefGoogle Scholar
  15. 15.
    Zi, G., Belytschko, T.: New crack-tip elements for xfem and applications to cohesive cracks. Int. J. Numer. Methods Eng. 57(15), 2221–2240 (2003)CrossRefzbMATHGoogle Scholar
  16. 16.
    Bordas, S.P.A., Moran, B.: Enriched finite elements and level sets for damage tolerance assessment of complex structures. Eng. Fract. Mech. 73(9), 1176–1201 (2006)CrossRefGoogle Scholar
  17. 17.
    Bordas, S.P.A., Nguyen, P.V., Dunant, C., Guidoum, A., Nguyen-Dang, H.: An extended finite element library. Int. J. Numer. Methods Eng. 71(January), 703–732 (2007)CrossRefzbMATHGoogle Scholar
  18. 18.
    Stazi, F.L., Budyn, E., Chessa, J., Belytschko, T.: An extended finite element method with higher-order elements for curved cracks. Comput. Mech. 31(1–2), 38–48 (2003)CrossRefzbMATHGoogle Scholar
  19. 19.
    Laborde, P., Pommier, J., Renard, Y., Salaün, M.: High-order extended finite element method for cracked domains. Int. J. Numer. Methods Eng. 64(3), 354–381 (2005)CrossRefzbMATHGoogle Scholar
  20. 20.
    Chessa, J., Wang, H., Belytschko, T.: On the construction of blending elements for local partition of unity enriched finite elements. Int. J. Numer. Methods Eng. 57(7), 1015–1038 (2003)CrossRefzbMATHGoogle Scholar
  21. 21.
    Duflot, M.: A study of the representation of cracks with level sets. Int. J. Numer. Methods Eng. 70(November 2006), 1261–1302 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ventura, G., Moran, B., Belytschko, T.: Dislocations by partition of unity. J. Numer. Methods Eng. 62, 1463–1487 (2005)CrossRefzbMATHGoogle Scholar
  23. 23.
    Béchet, E., Minnebo, H., Moës, N., Burgardt, B.: Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int. J. Numer. Methods Eng. 64(8), 1033–1056 (2005)CrossRefzbMATHGoogle Scholar
  24. 24.
    Menk, A., Bordas, S.P.A.: A robust preconditioning technique for the extended finite element method. Int. J. Numer. Methods Eng. 85(October 2010), 1609–1632 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Babuška, I., Banerjee, U.: Stable generalized finite element method (SGFEM). Comput. Methods Appl. Mech. Eng. 201, 91–111 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Gupta, V., Duarte, C.A., Babuška, I., Banerjee, U.: A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics. Comput. Methods Appl. Mech. Eng. 266, 23–39 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Gupta, V., Duarte, C.A., Babuška, I., Banerjee, U.: Stable GFEM (SGFEM): improved conditioning and accuracy of gfem/xfem for three-dimensional fracture mechanics. Comput. Methods Appl. Mech. Eng. 289, 355–386 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Chevaugeon, N., Moës, N., Minnebo, H.: Improved crack tip enrichment functions and integration for crack modeling using the extended finite element method. J. Multiscale Comput. Eng. 11, 597–631 (2013)CrossRefGoogle Scholar
  29. 29.
    Agathos, K., Chatzi, E., Bordas, S.P.A., Talaslidis, D.: A well-conditioned and optimally convergent XFEM for 3d linear elastic fracture. Int. J. Numer. Methods Eng. 105(9), 643–677 (2016). nme.4982Google Scholar
  30. 30.
    Agathos, K., Chatzi, E., Bordas, S.P.A.: Stable 3d extended finite elements with higher order enrichment for accurate non planar fracture. Comput. Methods Appl. Mech. Eng. 306, 19–46 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Gracie, R., Wang, H., Belytschko, T.: Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods. Int. J. Numer. Methods Eng. 74(November 2007), 1645–1669 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Tarancón, J.E., Vercher, A., Giner, E., Fuenmayor, F.J.: Enhanced blending elements for XFEM applied to linear elastic fracture mechanics. Int. J. Numer. Methods Eng. 77(July 2008), 126–148 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Chahine, E., Laborde, P., Renard, Y.: A non-conformal eXtended Finite Element approach: integral matching Xfem. Appl. Numer. Math. 61(3), 322–343 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Fries, T.P.: A corrected XFEM approximation without problems in blending elements. Int. J. Numer. Methods Eng. 75(November 2007), 503–532 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Ventura, G., Gracie, R., Belytschko, T.: Fast integration and weight function blending in the extended finite element method. Int. J. Numer. Methods Eng. 77(July 2008), 1–29 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Loehnert, S., Mueller-Hoeppe, D.S., Wriggers, P.: 3D corrected XFEM approach and extension to finite deformation theory. Int. J. Numer. Methods Eng. 86(October 2010), 431–452 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Chahine, E., Laborde, P.: Crack tip enrichment in the XFEM using a cutoff function. Int. J. Numer. Methods Eng. 75(January), 629–646 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  40. 40.
    Stolarska, M., Chopp, D.L., Moës, N., Belytschko, T.: Modelling crack growth by level sets in the extended finite element method. Int. J. Numer. Methods Eng. 51(8), 943–960 (2001)CrossRefzbMATHGoogle Scholar
  41. 41.
    Sukumar, N., Chopp, D.L., Béchet, E., Moës, N.: Three-dimensional non-planar crack growth by a coupled extended finite element and fast marching method. Int. J. Numer. Methods Eng. 76(5), 727–748 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Fries, T.P., Baydoun, M.: Crack propagation with the extended finite element method and a hybrid explicit-implicit crack description. Int. J. Numer. Methods Eng. 89(November 2011), 1527–1558 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Sadeghirad, A., Chopp, D.L., Ren, X., Fang, E., Lua, J.: A novel hybrid approach for level set characterization and tracking of non-planar 3d cracks in the extended finite element method. Eng. Fract. Mech. 160, 1–14 (2016)CrossRefGoogle Scholar
  44. 44.
    Ventura, G., Budyn, E., Belytschko, T.: Vector level sets for description of propagating cracks in finite elements. Int. J. Numer. Methods Eng. 58(10), 1571–1592 (2003)CrossRefzbMATHGoogle Scholar
  45. 45.
    Agathos, K., Ventura, G., Chatzi, E., Bordas, S.P.A.: Stable 3D XFEM/vector-level sets for non-planar 3D crack propagation and comparison of enrichment schemes. Int. J. Numer. Methods Eng. (2017).  http://dx.doi.org/10.1002/nme.5611 Google Scholar
  46. 46.
    Renard, Y., Pommier, J.: Gmm++ library. http://download.gna.org/getfem/html/homepage/gmm/index.html, 2004–2014
  47. 47.
    Geuzaine, C., Remacle, J.F.: Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Ahrens, J., Geveci, B., Law, C., Hansen, C., Johnson, C.: 36-Paraview: An end-user tool for large-data visualization. Vis. Handb. 717 (2005)Google Scholar
  49. 49.
    Ayachit, U.: The Paraview Guide: A Parallel Visualization Application. Kitware, Inc. (2015)Google Scholar
  50. 50.
    Buchholz, F.G., Chergui, A., Richard, H.A.: Fracture analyses and experimental results of crack growth under general mixed mode loading conditions. Eng. Fract. Mech. 71(4), 455–468 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Konstantinos Agathos
    • 1
  • Giulio Ventura
    • 2
  • Eleni Chatzi
    • 3
  • Stéphane P. A. Bordas
    • 4
    • 5
  1. 1.Research Unit in Engineering ScienceLuxembourg UniversityLuxembourgLuxembourg
  2. 2.Department of Structural, Geotechnical and Building EngineeringPolitecnico di TorinoTorinoItaly
  3. 3.Institute of Structural EngineeringETH ZürichZürichSwitzerland
  4. 4.Faculté des Sciences, de la Technologie et de la CommunicationUniversité du LuxembourgLuxembourgLuxembourg
  5. 5.School of EngineeringCardiff UniversityCardiff WalesUK

Personalised recommendations