Skip to main content

Characterization of the Fibre Modifications and Localization of the Functionalization Molecules

  • Chapter
  • First Online:
Surfaces and Interfaces in Natural Fibre Reinforced Composites

Abstract

As pointed out by George et al. (Polym Eng Sci 41(9):1471–1485, 2001), a clear understanding of the complex nature of surfaces in lignocellulosic substrates is needed to optimize modification procedures and thus to increase the usefulness of lignocellulosic biomass as a constituent of composite materials in technical applications. Surface chemistry and topographical features of the fibres are key parameters that influence chemical bonding and mechanical interlocking with polymer matrices, and hence govern the wetting and adhesion/adherence processes in natural fibre reinforced composites. This chapter proposes a comprehensive description of the different approaches used to characterize natural fibres modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Short natural fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Comp Sci Techn 64:1627–1639

    Article  Google Scholar 

  • Abdelmouleh M, Boufi S, MN, Duarte AP, Salah AB, Gandini A (2004) Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J Adhes Adhes 24:43–54

    Google Scholar 

  • Abdelmouleh M, Boufi S, Salah AB, Belgacem MN, Gandini A (2002) Interaction of silane coupling agents with cellulose. Langmuir 18:3203–3208

    Article  Google Scholar 

  • Abidi N, Cabrales L, Haigler CH (2014) Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carb Polym 100:9–16

    Article  Google Scholar 

  • Acera Fernández J, Le Moigne N, Caro-Bretelle AS, El Hage R, Le Duc A, Lozachmeur M, Bono P, Bergeret A (2016) Role of flax cell wall components on the microstructure and transverse mechanical behaviour of flax fabrics reinforced epoxy biocomposites. Ind Crops Prod 85:93–108

    Article  Google Scholar 

  • Acero E, Kudanga T, Ortner A, Kaluzna I, de Wildeman S, Nyanhongo GS, Guebitz GM (2014) Laccase functionalization of flax and coconut fibers. Polymers 6:1676–1684

    Article  Google Scholar 

  • Adebajo MO, Frost RL, Kloprogge JT, Kokot S (2006) Raman spectroscopic investigation of acethylation of raw cotton. Spectrochem Acata Part A 64:448–453

    Article  Google Scholar 

  • Aruan Efendy MG, Pickering KL (2014) Comparison of harakeke with hemp fibre as a potential reinforcement in composites. Compos Part A Appl Sci Manuf 67:259–267

    Article  Google Scholar 

  • Asumani OML, Reid RG, Paskaramoorthy R (2012) The effects of alkali–silane treatem, t on the tensile and flexural properties of short fibre non–woven kenaf reinforced polypropylene composites. Comp Part A Appl Sci Manufact 43:1431–1440

    Article  Google Scholar 

  • Aziz SH, Ansell MP (2004) The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: part 2–cashew nut shell liquid matrix. Compos Sci Technol 64(9):1231–1238

    Article  Google Scholar 

  • Baiardo M, Frisoni G, Scandola M, Licciardello A (2002) Surface chemical modification of natural cellulose fibers. J Appl Polym Sci 83:38–45

    Article  Google Scholar 

  • Baley C, Busnel F, Grohens Y, Sire O (2006) Influence of chemical treatments on surface properties and adhesion of flax fibre–polyester resin. Compos Part A Appl Sci Manuf 37:1626–1637

    Article  Google Scholar 

  • Belgacem MN, Czeremuszkin G, Sapieha S, Gandini A (1995) Surface characterization of cellulose fibres by XPS and inverse gas chromatography. Cellulose 2(3):145–157

    Article  Google Scholar 

  • Belgacem MN, Gandini A (1999) IGC as a tool to characterize dispersive and acid–base properties of the surface of fibers and powders. In: Pefferkorn E (ed) Interfacial phenomena in chromatography. Marcel Dekker, New York, pp 41–124

    Google Scholar 

  • Belgacem MN, Gandini A (2005) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Comp Interfaces 12:41–75

    Article  Google Scholar 

  • Berthet MA, Angellier-Coussy H, Chea V, Guillard V, Gastaldi E, Gontard N (2015) Sustainable food packaging: valorising wheat straw fibres for tuning PHBV–based composites properties. Compos Part A Appl S 72:139–147

    Article  Google Scholar 

  • Bertoti AR, Luporini S, Esperidiao MCA (2009) Effects of acethylation in vapor phase and mercerization on the properties of sugarcane fibers. Carb Polym 77:20–24

    Article  Google Scholar 

  • Bharti B, Kalia S, Kumar S, Kumar A, Mittal H (2013) Surface functionalization of sisal fibers using peroxide treatment followed by grafting of poly(ethyl acrylate) and copolymers. Int J Polym Anal Charact 18:596–607

    Article  Google Scholar 

  • Blancher G, Morel MH, Gastaldi E, Cuq B (2005) Determination of surface tension properties of wheat endosperms, wheat flours and wheat glutens. Cereal Chem 82(2):158–165

    Article  Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  Google Scholar 

  • Bledzki AK, Mamun AA, Lucka-Gabor M, Gutowski VS (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym Lett 2:413–422

    Article  Google Scholar 

  • Bonazi E, Sever K, Sarikanat M, Seki Y, Demir A, Ozdogan E, Tavman I (2013) Effects of the atmospheric plasma treatments on surface and mechanical properties of flax fiber and adghesion between fiber–matrix for composite materials. Comp Part B 45(1):565–572

    Article  Google Scholar 

  • Borchani KE, Carrot C, Jaziri M (2015) Untreated and alkali treated fibers from Alfa stem: effect of alkali treatment on structural, morphological and thermal features. Cellulose 22:1577–1589

    Article  Google Scholar 

  • Branda F, Malucelli G, Durante M, Piccolo A, Mazzei P, Costantini A, Brigida S, Pennetta M, Bifulco A (2016) Silica treatments: a fire retardant strategy for hemp fabric/epoxy composites. Polymers 8(8):313

    Article  Google Scholar 

  • Cabrales L, Abidi N, Hammond A, Hamood A (2012) Cotton fabric functionalization with cyclodextrins. J Mater Environ Sci 3:561–574

    Google Scholar 

  • Cai M, Takagi H, Nakagaito AN, Katoh M, Ueki T, Waterhouse GI, Li Y (2015) Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Ind Crops Prod 65:27–35

    Article  Google Scholar 

  • Calado V, Barreto DW, d’Almeida JRM (2000) The effect of a chemical treatment on the structure and morphology of coir fibers. ‎J Mater Sci Mater 19(23):2151–2153

    Google Scholar 

  • Cantero G, Arbelaiz A, Llano-Ponte R, Mondragon I (2003) Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos Sci Technol 63:1247–1254

    Article  Google Scholar 

  • Celino A, Gonçalves O, Jacquemein F, Fréour S (2014) Qualitative and quantitative assessment water sorption in natural fibres using ATR–FTIR spectroscopy. Carb Polym 101:163–170

    Article  Google Scholar 

  • Chang S, Zhao Z, Zheng A, He F, Huang Z, Li H (2012) Characterization of products from torrefaction of sprucewood and bagasse in an auger reactor. Energy Fuels 26:7009–7017

    Article  Google Scholar 

  • Chen CY, Chiang CL (2008) Preparation of cotton fibers with antibacterial silver nanoparticles. Mater Lett 62:3607–3609

    Article  Google Scholar 

  • Cordeiro N, Gouveia C, Moraes AGO, Amico SC (2011a) Natural fibers characterization by inverse gas chromatography. Carbohydr Polym 84(1):110–117

    Article  Google Scholar 

  • Cordeiro N, Gouveia C, John MJ (2011b) Investigation of surface properties of physico–chemically modified natural fibres using inverse gas chromatography. Ind Crops Prod 33:108–115

    Article  Google Scholar 

  • Cordeiro N, Ornelas M, Ashori A, Sheshmani S, Norouzi H (2012) Investigation on the surface properties of chemically modified natural fibers using inverse gas chromatography. Carbohydr Polym 87:2367–2375

    Article  Google Scholar 

  • Coupas AC, Gauthier H, Gauthier R (1998) Inverse gas chromatography as a tool to characterize lignocellulosic fibers modified for composite applications. Polym Compos 19:280–286

    Article  Google Scholar 

  • Csiszár E, Fekete E (2011) Microstructure and surface properties of fibrous and ground cellulosic substrates. Langmuir 27:8444–8450

    Article  Google Scholar 

  • Datta J, Kopczynska P (2015) Effect of kenaf fibre modification on morphology and mechanical properties of thermoplastic polyurethane materials. Ind Crops Prod 74:566–576

    Article  Google Scholar 

  • de Meijer M, Haemers S, Cobben W, Militz H (2000) Surface energy determinations of wood: comparison of methods and wood species. Langmuir 16:9352–9359

    Article  Google Scholar 

  • Della Volpe C, Siboni S (1997) Some reflections on acid–base solid surface free energy theories. J Colloid Interf Sci 195(1):121–136

    Article  Google Scholar 

  • De Rosa IM, Kenny JM, Mohd M, Manirussaman M, Monti M, Puglia D, Santulli C, Sarasini F (2011) Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres. Comp Sci Technol 71:246–254

    Article  Google Scholar 

  • Dinan E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I → cellulose 2. Cellulose 9:7–18

    Article  Google Scholar 

  • Doan TTL, Brodowsky H, Mäder E (2012) Jute fibre/epoxy composites: surface properties and interfacial adhesion. Compos Sci Technol 72(10):1160–1166

    Article  Google Scholar 

  • Dong A, Wu H, Fan X, Wang Q, Yu Y, Cavaco-Paulo A (2016) Enzymatic hydrophobization of jute fabrics and its effect on the mechanical and interfacial properties of jute/PP composites. Express Polym Lett 10:420–429

    Article  Google Scholar 

  • Dorez G, Taguet A, Ferry L, Lopez-Cuesta JM (2014a) Phosphorous compounds as flame retardants for polybutylene succinate/flax biocomposite: Additive versus reactive route. Polym Degrad Stab 102:152–159

    Article  Google Scholar 

  • Dorez G, Otazaghine B, Taguet A, Ferry L, Lopez-Cuesta JM (2014b) Use of Py–GC/MS and PCFC to characterize the surface modification of flax fibres. J Anal Appl Pyrolysis 105:122–130

    Article  Google Scholar 

  • Dorez G, Otazaghine B, Taguet A, Ferry L, Lopez-Cuesta JM (2014c) Improvement of the fire behavior of poly(1,4–butanediol succinate)/flax biocomposites by fiber surface modification with phosphorus compounds: molecular versus macromolecular strategy. Polym Int 63:1665–1673

    Article  Google Scholar 

  • Edeerozey AM, Akil HM, Azhar AB, Ariffin MZ (2007) Chemical modification of kenaf fibers. Mater Lett 61(10):2023–2025

    Article  Google Scholar 

  • Elenga RG, Djemia P, Tingaud D, Chauveau T, Maniongui JG, Dirras G (2013) Effects of alkali treatment on the microstructure, composition and properties of the Raffia textilis fiber. Bioressources 8(2):2934–2949

    Google Scholar 

  • El-Nahhal IM, Zourab SM, Kodeh FS, Selmane M, Genois I, Babonneau F (2012) Nanostructured copper oxide–cotton fibers: synthesis, characterization, and applications. Int Nano Lett 2(1):14

    Article  Google Scholar 

  • Fowkes FM (1964) Attractive forces at interfaces. Ind Eng Chem 56(12):40–52

    Article  Google Scholar 

  • Fuentes CA, Brughmans G, Tran LQN, Dupont-Gillain C, Verpoest I, Van Vuure AW (2015) Mechanical behaviour and practical adhesion at a bamboo composite interface: physical adhesion and mechanical interlocking. Compos Sci Technol 109:40–47

    Article  Google Scholar 

  • Gamelas JAF (2013) The surface properties of cellulose and lignocellulosic materials assessed by Inverse Gas Chromatography: a review. Cellulose 20:2675–2693

    Article  Google Scholar 

  • Gea Rodi E, Mangeon C, Dessauw E, Sansalone V, Lemaire T, Renard E, Langlois V (2016) Functionalization of miscanthus by photoactivated thiolene addition to improve interfacial adhesion with polycaprolactone. ACS Sustain Chem Eng 4:5475–5482

    Article  Google Scholar 

  • George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41(9):1471–1485

    Article  Google Scholar 

  • George M, Mussone PG, Bressler DC (2015) Modification of the cellulosic component of hemp fibers using sulfonic acid derivatives: surface and thermal characterization. Carbohydr Polym 134:230–239

    Article  Google Scholar 

  • Girones J, Pimenta MTB, Vilaseca F, de Carvalho AFJ, Mutje P, Curvelo AAS (2007) Blocked isocyanates as coupling agents for cellulose base composites. Carbohyd Polym 68:537–543

    Article  Google Scholar 

  • Goel NK, Kumar V, Rao MS, Bhardwaj YK, Sabharwal S (2011) Functionalization of cotton fabrics by radiation induced grafting of quaternary salt to impart antibacterial property. Radiat Phys Chem 80:1233–1241

    Article  Google Scholar 

  • Good RJ, van Oss CJ (1992) The modern theory of contact angles and the hydrogen bond components of surface energies. In: Loeb GI, Schrader ME (eds) Modern approaches to wettability. Plenum Press, New York, pp 1–27

    Google Scholar 

  • Gwon JG, Lee SY, Doh GH, Kim JH (2010) Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J Appl Polym Sci 116:3212–3219

    Google Scholar 

  • Han S, Cho D, Park W, Drzal L (2006) Henequen/poly(butylene succinate) biocomposites: electron beam irradiation effects on henequen fiber and the interfacial properties of biocomposites. Compos Interface 13:231–247

    Article  Google Scholar 

  • Han SO, Choi HY (2010) Morphology and surface properties of natural fiber treated with electron beam. In: Méndez–Vilas A, Díaz J (eds) Microscopy: science, technology, applications and education. Formatex Research Center, pp 1880–1887

    Google Scholar 

  • Heng JYY, Pearse DF, Thielmann F, Lampke T, Bismarck A (2007) Methods to determine surface energies of natural fibres: a review. Compos Interface 14(7–9):581–604

    Article  Google Scholar 

  • Himmelsbach DS, Akin DE (1998) Near infrared Fourier transform Raman spectroscopy of flax (Linum usitatissimum L.) stems. J Agric Food Chem 46:991–998

    Article  Google Scholar 

  • Hiriart-Ramírez E, Contreras-García A, Garcia-Fernandez MJ, Concheiro A, Alvarez-Lorenzo C, Bucio E (2012) Radiation grafting of glycidyl methacrylate onto cotton gauzes for functionalization with cyclodextrins and elution of antimicrobial agents. Cellulose 19:2165–2177

    Article  Google Scholar 

  • Hong KH, Liu N, Sun G (2009) UV–induced graft polymerization of acrylamide on cellulose by using immobilized benzophenone as a photo–initiator. Eur Polym J 45:2443–2449

    Article  Google Scholar 

  • Jahn A, Schroder MW, Futing M, Schenzel K, Diepenbrock W (2002) Characterization of alkali treated flax fibres by means of FT–Raman spectroscopy and environmental scanning electron microscopy. Spectrochem Acta Part A 58(10):2271–2279

    Article  Google Scholar 

  • Jiang H, Zhang Y, Wang X (2009) Effect of lipases on the surface properties of wheat straw. Ind Crops Prod 30:304–310

    Article  Google Scholar 

  • John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29(2):187–207

    Article  Google Scholar 

  • Kabir MM, Wang H, Lau KT, Cardona F (2013) Effects of chemical treatments on hemp fibre structure. Appl Surf Sci 276:13–23

    Article  Google Scholar 

  • Kafi AA, Magniez K, Fox BL (2011) A surface–property relationship of atmospheric plasma treated jute composites. Compos Sci Technol 71(15):1692–1698

    Article  Google Scholar 

  • Khalil HPSA, Ismail H, Rozman HD, Ahmad MN (2001) The effect of acetylation on interfacial shear strength between plant fibres and various matrices. Eur Polym J 37:1037–1045

    Article  Google Scholar 

  • Kim YS, Lee KH, Kim JS (2016) Weathering characteristics of bamboo (Phyllostachys puberscence) exposed to outdoors for one year. J Wood Sci 62:332–338

    Article  Google Scholar 

  • Kodal M, Topuk ZD, Ozkoc G (2015) Dual effect of chemical modification and polymer precoating of flax fibers on the properties of short flax fiber/poly(lactic acid) composites. J Appl Polym Sci 132

    Google Scholar 

  • Krishnaiah P, Ratnam CT, Manickam S (2017) Enhancements in crystallinity, thermal stability, tensile modulus and strength of sisal fibres and their PP composites induced by the synergistic effect of alkali and high intensity ultrasound (HIU) treatments. Ultrason Sonochem 34:729–742

    Article  Google Scholar 

  • Kushwaha PK, Kumar R (2010) Effect of silanes on mechanical properties of bamboo fiber–epoxy composites. J. Reinf Plast Comp 29:718–724

    Article  Google Scholar 

  • Le Digabel F, Boquillon N, Dole P, Monties B, Averous L (2004) Properties of thermoplastic composites based on wheat–straw lignocellulosic fillers. J Appl Polym Sci 93:428–436

    Article  Google Scholar 

  • Le Duigou A, Bourmaud A, Balnois E, Davies P, Baley C (2012) Improving the interfacial properties between flax fibres and PLLA by a water fibre treatment and drying cycle. Ind Crops Prod 39:31–39

    Article  Google Scholar 

  • Le Moigne N, Longerey M, Taulemesse JM, Benezet JC, Bergeret A (2014) Study of the interface in natural fibres reinforced poly (lactic acid) biocomposites modified by optimized organosilane treatments. Ind Crops Prod 52:481–494

    Article  Google Scholar 

  • Lee S, Shi SQ, Groom LH, Xue Y (2010) Properties of unidirectional kenaf fiber–polyolefin laminates. Polym Compos 31:1067–1074

    Google Scholar 

  • Li Y, Pickering KL (2008) Hemp fibre reinforced composites using chelator and enzyme treatments. Comp Sci 38:3293–3298

    Google Scholar 

  • Luna-Straffon MA, Contreras-García A, Brackman G, Coenye T, Concheiro A, Alvarez–Lorenzo C, Bucio E (2014) Wound debridement and antibiofilm properties of gamma–ray DMAEMA–grafted onto cotton gauzes. Cellulose:3767–3779

    Google Scholar 

  • Ly B, Thielemans W, Dufresne A, Chaussy D, Belgacem MN (2008) Surface functionalization of cellulose fibres and their incorporation in renewable polymeric matrices. Comp Sci Technol 68:3193–3201

    Article  Google Scholar 

  • Manna S, Saha P, Roy D, Sen R, Adhikari B, Das S (2013) Enhanced biodegradation resistance of biomodified jute fibers. Carbohydr Polym 93:597–603

    Article  Google Scholar 

  • Marques MDFV, Melo RP, Araujo RDS, Lunz JDN, Aguiar VDO (2015) Improvement of mechanical properties of natural fiber–polypropylene composites using successive alkaline treatments. J Appl Polym Sci 132(12)

    Google Scholar 

  • Martins MA, Forato LA, Mattoso LHC, Colnago LA (2006) A solid state 13C high resolution NMR study of raw and chemically treated sisal fibers. Carbohydr Polym 64:127–133

    Article  Google Scholar 

  • Mei Y, Che Q, Yang Q, Draper C, Yang H, Zhang S, Chen H (2016) Torrefaction of different parts from corn stalk and its effect on the characterization of products. Ind Crops Prod 92:26–33

    Article  Google Scholar 

  • Mészáros E, Jakab E, Gáspár M, Reczey K, Varhegyi G (2009) Thermal behavior of corn fibers and corn fiber gums prepared in fiber processing to ethanol. J Anal Appl Pyrolysis 85:11–18

    Article  Google Scholar 

  • Mills RH, Gardner DJ, Wimmer R (2008) Inverse gas chromatography for determining the dispersive surface free energy and acid–base interactions of sheet molding compound–part ii 14 lignocellulosic fiber types for possible composite reinforcement. J Appl Polym Sci 110(6):3880–3888

    Article  Google Scholar 

  • Moawia RM, Nasef MM, Mohamed NH, Ripin A (2016) Modification of flax fibres by radiation induced emulsion graft copolymerization of glycidyl methacrylate. Radiat Phys Chem 122:35–42

    Article  Google Scholar 

  • Monier M, Akl MA, Ali WM (2014) Modification and characterization of cellulose cotton fibers for fast extraction of some precious metal ions. Int J Biol Macromol 66:125–134

    Article  Google Scholar 

  • Montaño-Leyva B, da Silva GGD, Gastaldi E, Torres-Chávez P, Gontard N, Angellier-Coussy H (2013) Biocomposites from wheat proteins and fibers: structure/mechanical properties relationships. Ind Crops Prod 43:545–555

    Google Scholar 

  • Morshed MM, Alam MM, Daniels SM (2010) Plasma treatment of natural jute fibre by RIE80 plus plasma tool. Plasma Sci Technol 12(3):325–329

    Article  Google Scholar 

  • Mosiewicki MA, Marcovich NE, Aranguren MI (2011) Characterization of fiber surface treatments in natural fiber composites by infrared and Raman spectroscopy. Interface Eng Nat Fibre Compos Maximum Perform:117–145 Chap. 4

    Google Scholar 

  • Mou HY, Wu S, Fardim P (2016) Applications of ToF–SIMS in surface chemistry analysis of lignocellulosic biomass: a review. BioResources 11(2):5581–5599

    Google Scholar 

  • Mucalo MR, Yokogawa Y, Suzuki T, Kawamoto Y, Nagata F, Nishizawa K (1995) Further studies of calcium phosphate growth on phosphorylated cotton fibres. J Mater Sci Mater Med 6:658–669

    Article  Google Scholar 

  • Ning N, Fu S, Zhang W, Chen F, Wang K, Deng H, Zhang Q, Fu Q (2012) Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Prog Polym Sci 37:1425–1455

    Article  Google Scholar 

  • Ouajai S, Hodzic A, Shanks RA (2004) Morphological and grafting modification of natural cellulose fibers. J Appl Polym Sci 94:2456–2465

    Article  Google Scholar 

  • Owens D, Wendt R (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Article  Google Scholar 

  • Paladini F, Picca RA, Sportelli MC, Cioffi N, Sannino A, Pollini M (2015) Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications. Mater Sci Eng C 52:1–10

    Article  Google Scholar 

  • Papirer E, Brendle E, Balard H, Vergelati C (2000) Inverse gas chromatography investigation of the surface properties of cellulose. J Adhes Sci Technol 14(3):321–337

    Article  Google Scholar 

  • Pietak A, Korte S, Tan E, Downard A, Staiger MP (2007) Atomic force microscopy characterization of the surface wettability of natural fibres. Appl Surf Sci 253(7):3627–3635

    Article  Google Scholar 

  • Plackett D, Jankova K, Egsgaard H, Hvilsted S (2005) Modification of jute fibers with polystyrene via atom transfer radical polymerization. Biomacromol 6:2474–2484

    Article  Google Scholar 

  • Pogue RT, Ye J, Klosterman DA, Glass AS, Chartoff RP (1998) Evaluating fiber–matrix interactions in polymer–matrix composites by inverse gas chromatography. Comp Part A Appl Sci 29A:1273–1281

    Article  Google Scholar 

  • Ragoubi M, George B, Molina S, Bienaimé D, Merlin A, Hiver JM, Dahoun A (2012) Effect of corona discharge treatment on mechanical and thermal properties of composites based on miscanthus fibres and polylactic acid or polypropylene matrix. Compos Part A Appl Sci Manuf 43:675–685

    Article  Google Scholar 

  • Rasch R, Stricher A, Truss RW (2014) Energy filtered low voltage “in lens detector” SEM and XPS of natural fiber surfaces. J Appl Polym Sci 131:1–7

    Article  Google Scholar 

  • Ray D, Sengupta SP, Rana AK, Bose NR (2006) Static and dynamic mechanical properties of vinylester resin matrix composites reinforced with shellac–treated jute yarns. Ind Eng Chem Res 45(8):2722–2727

    Article  Google Scholar 

  • Reeves JB, Galletti GC (1993) Use of pyrolysis—gas chromatography/mass spectrometry in the study of lignin assays. J Anal Appl Pyrolysis 24:243–255

    Article  Google Scholar 

  • Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatments on the mechanical properties of unidirectional sisal–reinforced epoxy composites. Comp Sci Technol 61:1437–1447

    Article  Google Scholar 

  • Rout AK, Kar J, Jesthi K, Kumar A (2016) Effect of surface treatment on the physical, chemical, and mechanical properties of palm tree leaf stalk fibers. Bioresources.com 11:4432–4445

    Google Scholar 

  • Roy A, Adhikari B, Majumder SB (2013) Equilibrium, kinetic, and thermodynamic studies of azo dye adsorption from aqueous solution by chemically modified lignocellulosic jute fiber. Ind Eng Chem Res 52:6502–6512

    Article  Google Scholar 

  • Salah F, El Ghoul Y, Roudesli S (2015) Bacteriological effects of functionalized cotton dressings. J Text Inst 5000:1–11

    Article  Google Scholar 

  • Scalici T, Fiore V, Valenza A (2016) Effect of plasma treatment on the properties of Arundo Donax L. leaf fibres and its bio–based epoxy composites: a preliminary study. Comp Part B 94:167–175

    Article  Google Scholar 

  • Selvam S, Sundrarajan M (2012) Functionalization of cotton fabric with PVP/ZnO nanoparticles for improved reactive dyeability and antibacterial activity. Carbohydr Polym 87:1419–1424

    Article  Google Scholar 

  • Shen W, Sheng YJ, Parker IH (1999) Comparison of the surface energetics data of eucalypt fibers and some polymers obtained by contact angle and inverse gas chromatography methods. J Adhes Sci Technol 13:887–890

    Article  Google Scholar 

  • Shih YF, Huang RH, Yu YH (2014) Preparation and characterization of sol–gel–modified pineapple leaf fiber/polylactic acid composites. J Sol-Gel Sci Technol 70:491–499

    Article  Google Scholar 

  • Singha AS (2011) Kinetics of graft copolymerization of acrylic acid onto cannabis indica fibre. Iran Polym J 20:913–929

    Google Scholar 

  • Sinha E (2009) Effect of clod plasma treatment on macromolecular structure, thermal and mechanical behaviour of jute fiber. J Ind Text 38(4):317–339

    Article  Google Scholar 

  • Sonnier R, Otazaghine B, Viretto A, Apolinario G, Ienny P (2015) Improving the flame retardancy of flax fabrics by radiation grafting of phosphorus compounds. Eur Polym J 68:313–325

    Article  Google Scholar 

  • Stevanic JS, Salmén L (2008) Characterizing wood polymers in the primary cell wall of Norway spruce (Picea abies (L.) Karst.) using dynamic FT–IR spectroscopy. Cellulose 15:285–295

    Article  Google Scholar 

  • Szymanska-Chargot M, Chylinska M, Kruk B, Zdunek A (2015) Combining FT–IR spectroscopy and pmultivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development. Carb Polym 115:93–103

    Article  Google Scholar 

  • Thakur K, Kalia S, Kaith BS, Pathania D, Kumar A (2015) Surface functionalization of coconut fibers by enzymatic biografting of syringaldehyde for the development of biocomposites. RSC Adv 5:76844–76851

    Article  Google Scholar 

  • Thakur K, Kalia S, Pathania D, Kumar A, Sharma N, Schauer CL (2016) Surface functionalization of lignin constituent of coconut fibers via laccase–catalyzed biografting for development of antibacterial and hydrophobic properties. J Clean Prod 113:176–182

    Article  Google Scholar 

  • Totolin MI, Vasile C, Tibirna CM, Popescu MC (2008) Grafting of spanish broom (Spartium junceum) fibers with fatty acids under cold plasma conditions. Cellul Chem Technol 42:317–333

    Google Scholar 

  • Tran LQN, Fuentes CA, Dupont-Gillain C, Van Vuure AW, Verpoest I (2013) Understanding the interfacial compatibility and adhesion of natural coir fibre thermoplastic composites. Compos Sci Technol 80:23–30

    Article  Google Scholar 

  • Truss RW, Wood B, Rasch R (2016) Quantitative surface analysis of hemp fibers using XPS, conventional and low voltage in–lens SEM. J Appl Polym Sci 133:1–9

    Article  Google Scholar 

  • Tze WTY, Gardner DJ, Tripp CP (2006) Cellulose fiber/polymer adhesion: effects of fiber/matrix interfacial chemistry on the micromechanics of the interphase. J Adhes Sci Technol 20(15):1649–1668

    Article  Google Scholar 

  • Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, Herrera-Franco PJ (1999) Effect of fiber surface treatment on the fiber–matrix bond strength of natural diber reinforced composites. Comp Part B 30:309–320

    Article  Google Scholar 

  • Van Oss CJ, Omenyi SN, Neumann AW (1979) Negative Hamaker coefficients: II. Phase separation of polymer solutions. Colloid Polym Sci 257(7):737–44

    Google Scholar 

  • Wang Y, Tong B, Hou S, Li M, Shen C (2011) Transcrystallization behavior at the poly(lactic acid)/sisal fibre biocomposite interface. Compos Part A Appl Sci 42:66–74

    Article  Google Scholar 

  • Wu S (1971) Calculation of interfacial tension in polymer systems. J Polym Sci Part C Polym Symp 34:19–30

    Article  Google Scholar 

  • Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Comp Part A Appl Sci Manufact 41:806–819

    Article  Google Scholar 

  • Xu Y, Kawata S, Hosoi K, Kawai T, Kuroda S (2009) Thermomechanical properties of the silanized–kenaf/polystyrene composites. Express Polym Lett 3:657–664

    Article  Google Scholar 

  • Xue CH, Jia ST, Zhang J, Tian LQ (2009) Superhydrophobic surfaces on cotton textiles by complex coating of silica nanoparticles and hydrophobization. Thin Solid Films 517:4593–4598

    Article  Google Scholar 

  • Yamanaka A, Yoshikawa M, Abe S, Tsutsumi M, Oohazama T, Kitagawa T, Fujishiro H, Ema K, Izumi Y, Nishijima S (2005) Effects of vapor–phase–formaldehyde treatments on thermal conductivity and diffusivity of ramie fibers in the range of low temperature. J Polym Sci Part B Polym Phys 43:2754–2766

    Article  Google Scholar 

  • Yamanaka A, Izumi Y, Terada T, Ema K, Tsutsumi M, Nakamura M, Oohazama T, Kitagawa T, Fujishiro H, Abe S, Nishijima S (2006) Radiation effect on the thermal conductivity and diffusivity of ramie fibers in a range of low temperatures by γ rays. J Appl Polym Sci 100:5007–5018

    Article  Google Scholar 

  • Yang C, Gao P, Xu B (2009) Investigations of a controllable nanoscale coating on natural fiber system: effects of charge and bonding on the mechanical properties of textiles. J Mater Sci 44:469–476

    Article  Google Scholar 

  • Yang H, Esteves ACC, Zhu H, Wang D, Xin JH (2012) In–situ study of the structure and dynamics of thermo–responsive PNIPAAm grafted on a cotton fabric. Polymer 53:3577–3586

    Article  Google Scholar 

  • Yu CT, Chen WH, Men LC, Hwang WS (2009) Microscopic structure features changes of rice straw treated by boiled acid solution. Ind Crops Prod 29:308–315

    Article  Google Scholar 

  • Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface–treatments on the properties of poly(lactic acid)/ramie composites. Comp Part A 41:499–505

    Article  Google Scholar 

  • Zafeiropoulos NE, Vickers PE, Baillie CA, Watts JF (2003) An experimental investigation of modified and unmodified flax fibres with XPS, ToF–SIMS and ATR–FTIR. J. Mat Sci 38:3903–3914

    Article  Google Scholar 

  • Zhang LL, Zhu RY, Chen JY, Chen JM, Feng XX (2008) Seawater–retting treatment of hemp and characterization of bacterial strains involved in the retting process. Process Biochem 43:1195–1201

    Article  Google Scholar 

  • Zhou Z, Wang J, Huang X, Zhang L, Moyo S, Sun S, Qiu Y (2012) Influence of absorbed moisture on surface hydrophobization of ethanol pretreated and plasma treated ramie fibers. Appl Surf Sci 258:4411–4416

    Article  Google Scholar 

  • Zhou M, Li Y, He C, Jin T, Wang K, Fu Q (2014) Interfacial crystallization enhanced interfacial interaction of Poly (butylene succinate)/ramie fiber biocomposites using dopamine as a modifier. Compos Sci Technol 91:22–29

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Le Moigne .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Le Moigne, N., Otazaghine, B., Corn, S., Angellier-Coussy, H., Bergeret, A. (2018). Characterization of the Fibre Modifications and Localization of the Functionalization Molecules. In: Surfaces and Interfaces in Natural Fibre Reinforced Composites. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-71410-3_4

Download citation

Publish with us

Policies and ethics