Skip to main content

Introduction on Natural Fibre Structure: From the Molecular to the Macrostructural Level

  • Chapter
  • First Online:
Surfaces and Interfaces in Natural Fibre Reinforced Composites

Abstract

Natural fibres are complex hierarchical bio-assemblies built-up of several biopolymers. In this chapter, the main features related to biopolymers organization within natural fibres are described. Then, the specific surface properties and porous structure of natural fibres that are key parameters as regard to fibre and interface modifications are detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmouleh M, Boufi S, Belgacem MN, Duarte AP, Salah AB, Gandini A (2004) Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J Adhes Adhes 24(1):43–54

    Article  Google Scholar 

  • Acera Fernández J, Le Moigne N, Caro-Bretelle AS, El Hage R, Le Duc A, Lozachmeur M, Bono P, Bergeret A (2016) Role of flax cell wall components on the microstructure and transverse mechanical behaviour of flax fabrics reinforced epoxy biocomposites. Ind Crops Prod 85:93–108

    Article  Google Scholar 

  • Agarwal UP, Reiner RR, Ralph SA (2011) Cellulose crystallinity of woods, wood pulps, and agricultural fibers by FT–Raman Spectroscopy. Red 19:67–69

    Google Scholar 

  • Akin DE, Condon B, Sohn M, Foulk JA, Dodd RB, Rigsby LL (2007) Optimization for enzyme–retting of flax with pectate lyase. Ind Crops Prod 25(2):136–146

    Article  Google Scholar 

  • Akin DE (2010) Chemistry of Plant Fibres. In: Müssig J (ed) Industrial applications of natural fibres: structure, properties and technical applications, John Wiley & Sons Ltd. West Sussex, United Kingdom, pp 13–22

    Google Scholar 

  • Aranberri-Askargorta I, Lampke T, Bismarck A (2003) Wetting behaviour of flax fibers as reinforcement for polypropylene. J Colloid Interf Sci 263(2):580–589

    Article  Google Scholar 

  • Argyropoulos DS, Menachem SB (1998) Lignin. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Berlin Heidelberg, pp 292–322

    Chapter  Google Scholar 

  • Atchison JE (1983) Data on non–wood plant fibers. In: Kocurek MJ (ed) Pulp and Paper Manufacture, vol 1. Properties of fibrous raw materials and their preparation for pulping, Tappi Press, Atlanta, GA, XVII

    Google Scholar 

  • Baley C, Busnel F, Grohens Y, Sire O (2006) Influence of chemical treatments on surface properties and adhesion of flax fibre–polyester resin. Compos Part A Appl S 37:1626–1637

    Article  Google Scholar 

  • Baltazar-y-Jimenez A, Bismarck A (2007) Wetting behaviour, moisture up–take and electrokinetic properties of lignocellulosic fibres. Cellulose 14:115–127

    Article  Google Scholar 

  • Bartell FE, Zuidema HH (1936) Wetting characteristics of solids of low surface tension such as talc, waxes and resins. J Am Chem Soc 58(8):1449–1454

    Article  Google Scholar 

  • Beaugrand J, Chabbert B, Kurek B (2017) Production, transformation et critères de qualité des fibres de lin et de chanvre pour un usage dans les matériaux composites. In: Berzin F (ed.) Composites polymères et fibres lignocellulosiques: Propriétés, transformation et caractérisation, Lavoisier, Hermes, pp 1–40

    Google Scholar 

  • Belgacem MN, Czeremuszkin G, Sapieha S, Gandini A (1995) Surface characterization of cellulose fibres by XPS and inverse gas chromatography. Cellulose 2:145–157

    Article  Google Scholar 

  • Belgacem MN, Gandini A (2005) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interface 12:41–75

    Article  Google Scholar 

  • Berthet MA, Commandré JM, Rouau X, Gontard N, Angellier-Coussy H (2016) Torrefaction treatment of lignocellulosic fibres for improving fibre/matrix adhesion in a biocomposites. Mater Design 92:223–232

    Article  Google Scholar 

  • Bismarck A, Aranberry-Askargorta I, Springer J, Lampke T, Wielage B, Stamboulis A, Shenderovich I, Limbach HH (2002) Surface characterization of flax, hemp and cellulose fibers surface properties and the water uptake behaviour. Polym Composite 23:872–894

    Article  Google Scholar 

  • Boudet AM (2002) L’amélioration des plantes, base de l’agriculture. Rapport de communication, Institut Fédératif de Recherche Signalisation Cellulaire et Biotechnologie Végétale (IFR 40), Toulouse

    Google Scholar 

  • Bourmaud A, Morvan C, Baley C (2010) Importance of fiber preparation to optimize the surface and mechanical properties of unitary flax fiber. Ind Crops Prod 32:662–667

    Article  Google Scholar 

  • Brosse N, El Hage R, Sannigrahi P, Ragauskas A (2010) Dilute sulfuric acid and ethanol organosolv pretreatment of Miscanthus x Giganteus. Cell Chem Technol 44:71–78

    Google Scholar 

  • Brosse N, Dufour A, Meng X, Sun Q, Ragauskas A (2012) Miscanthus: a fast–growing crop for biofuels and chemicals production. Biofuels Bioprod Bioref 6:580–598

    Article  Google Scholar 

  • Cantero G, Arbelaiz A, Llano-Ponte R, Mondragon I (2003) Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos Sci Technol 63:1247–1254

    Article  Google Scholar 

  • Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–550

    Google Scholar 

  • Castellano M, Gandini A, Fabbri P, Belgacem MN (2004) Modification of cellulose fibres with organosilanes: under what conditions does coupling occur? J Colloid Interface Sci 273:505–511

    Article  Google Scholar 

  • CELL division (2017) Cellulose structure & biosynthesis symposium. In: Papers presented at the 253rd ACS national meeting (vol. 253), San Francisco, CA, 2–6 April 2017

    Google Scholar 

  • Choi H, Han S, Lee J (2009) The effects of morphological properties of henequen fiber irradiated by eb on the mechanical and thermal properties of henequen fiber/PP composites. Compos Interface 16:751–768

    Article  Google Scholar 

  • de Meijer M, Haemers S, Cobben W, Militz H (2000) Surface energy determinations of wood: comparison of methods and wood species. Langmuir 16:9352–9359

    Article  Google Scholar 

  • Doan TTL, Brodowsky H, Mäder E (2012) Jute fibre/epoxy composites: surface properties and interfacial adhesion. Compos Sci and Technol 72(10):1160−1166

    Google Scholar 

  • Dorez G, Otazaghine B, Taguet A, Ferry L, Lopez-Cuesta JM (2014) Use of Py–GC/MS and PCFC to characterize the surface modification of flax fibres. J Anal Appl Pyrol 105:122–130

    Article  Google Scholar 

  • Driscoll M, Stipanovic A, Winter W, Cheng K, Manning M, Spiese J, Galloway RA, Cleland MR (2009) Electron beam irradiation of cellulose. Radiat Phys Chem 78:539–542

    Article  Google Scholar 

  • El Hage R, Chrusciel L, Desharnais L, Brosse N (2010a) Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification. Bioresour Technol 101:9321–9329

    Article  Google Scholar 

  • El Hage R, Brosse N, Sannigrahi P, Ragauskas A (2010b) Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polym Degrad Stabil 95:997–1003

    Article  Google Scholar 

  • Eriksson M, Notley SM, Wågberg L (2007) Cellulose thin films: degree of cellulose ordering and its influence on adhesion. Biomacromol 8:912–919

    Article  Google Scholar 

  • Fengel D, Wegener G (1989) Wood chemistry, ultrastructure and reactions. Walter de Gruyter, Berlin

    Google Scholar 

  • Ferreira M, Sartori M, Oliveira R, Guven O, Moura EAB (2014) Short vegetal–fiber reinforced HDPE – A study of electron–beam radiation treatment effects on mechanical and morphological properties. Appl Surf Sci 310:325–330

    Article  Google Scholar 

  • Fidelis MEA, Pereira TVC, Gomes ODFM, de Andrade Silva F, Toledo Filho RD (2013) The effect of fiber morphology on the tensile strength of natural fibers. J Mater Res Technol 2(2):149–157

    Article  Google Scholar 

  • Fink HP, Philipp B, Zschunke C, Hayn M (1992) Structural changes of LOPD cellulose in the original and mercerized state during enzymatic hydrolysis. Acta Polym 43:270–274

    Article  Google Scholar 

  • Fuentes CA, Brughmans G, Tran LQN, Dupont-Gillain C, Verpoest I, Van Vuure AW (2015) Mechanical behaviour and practical adhesion at a bamboo composite interface: Physical adhesion and mechanical interlocking. Compos Sci Technol 109:40–47

    Article  Google Scholar 

  • George M, Mussone PG, Abboud Z, Bressler DC (2014) Characterization of chemically and enzymatically treated hemp fibres using atomic force microscopy and spectroscopy. Appl Surf Sci 314:1019–1025

    Article  Google Scholar 

  • Gorshkova T, Salnikov VV, Pogodina NM, Chemikosova SB, Yablokova EV, Ulanov AV, Ageeva MV, Van Dam JEG, Lozovaya VV (2000) Composition and distribution of cell wall phenolic compounds in flax (Linum usitatissimum L.) stem tissues. Ann Bot 85:477–486

    Article  Google Scholar 

  • Gu Y (2017) Does cortical microtubule array guide the orientation of cellulose deposition or not? In: Papers presented at the 253rd ACS national meeting (vol. 253), San Francisco, CA, 2–6 April 2017

    Google Scholar 

  • Gutierrez A, Rodrıguez IM, del Rio JC (2008) Chemical composition of lipophilic extractives from sisal (Agave sisalana) fibers. Ind Crops Prod 28:81–87

    Article  Google Scholar 

  • Han S, Cho D, Park W, Drzal L (2006a) Henequen/poly(butylene succinate) biocomposites: electron beam irradiation effects on henequen fiber and the interfacial properties of biocomposites. Compos Interface 13:231–247

    Article  Google Scholar 

  • Han Y, Han S, Cho D, Kim H (2006b) Henequen/unsaturated polyester biocomposites: electron beam irradiation treatment and alkali treatment effects on the henequen fiber. Macromol Symp 245–246:539–546

    Article  Google Scholar 

  • Han SO, Choi HY (2010) Morphology and surface properties of natural fiber treated with electron beam. In: Méndez–Vilas A, Díaz J (eds.) Microscopy: science, technology, applications and education, Formatex Research Center, pp 1880–1887

    Google Scholar 

  • Heinze T, Petzold-Welcke K, van Dam JEG (2012) Polysaccharides: Molecular and supramolecular structures. Terminology. In: Navard P (ed) The European polysaccharide network of excellence (EPNOE), Springer, Wien, pp 23–64

    Google Scholar 

  • Hon DNS (1994) Cellulose: a random walk along its historical path. Cellulose 1:1–25

    Article  Google Scholar 

  • Jain S, Kumar R, Jindal UC (1992) Mechanical behaviour of bamboo and bamboo composite. J Mater Sci 27:4598–4604

    Article  Google Scholar 

  • Jarvis MC (1984) Structure and properties of pectin gels in plant cell walls. Plant, Cell Environ 7:153–164

    Google Scholar 

  • John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber–reinforced composites. Polym Composite 29:187–207

    Article  Google Scholar 

  • Joseph S, Sreekala M, Oommen Z, Koshy P, Thomas S (2002) A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Compos Sci Technol 62:1857–1868

    Article  Google Scholar 

  • Kaack K, Schwarz KU, Brander PE (2003) Variation in morphology, anatomy and chemistry of stems of miscanthus genotypes differing in mechanical properties. Ind Crops Prod 17:131–141

    Article  Google Scholar 

  • Kafi AA, Magniez K, Fox BL (2011) A surface–property relationship of atmospheric plasma treated jute composites. Compos Sci Technol 71:1692–1698

    Article  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. Wiley–VCH, Weinheim

    Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  Google Scholar 

  • Krässig HA (1993) Cellulose —structure, accessibility and reactivity. In: Huglin MB (ed) Polymer monographs, vol 11. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  • Le Digabel F, Boquillon N, Dole P, Monties B, Averous L (2004) Properties of thermoplastic composites based on wheat–straw lignocellulosic fillers. J Appl Polym Sci 93:428–436

    Article  Google Scholar 

  • Le Duigou A, Bourmaud A, Balnois E, Davies P, Baley C (2012) Improving the interfacial properties between flax fibres and PLLA by a water fibre treatment and drying cycle. Ind Crops Prod 39:31–39

    Article  Google Scholar 

  • Le Moigne N, Longerey M, Taulemesse J–M, Bénézet J–C, Bergeret A (2014) Study of the interface in natural fibres reinforced poly(lactic acid) biocomposites modified by optimized organosilane Treatments. Ind Crops Prod 52:481–494

    Google Scholar 

  • Lee S, Shi SQ, Groom LH, Xue Y (2010) Properties of unidirectional kenaf fiber–polyolefin laminates. Polym Compos 31:1067–1074

    Google Scholar 

  • Lefeuvre A, Le Duigou A, Bourmaud A, Kervoelen A, Morvan C, Baley C (2015) Analysis of the role of the main constitutive polysaccharides in the flax fibre mechanical behaviour. Ind Crops Prod 76:1039–1048

    Article  Google Scholar 

  • Legras A, Kondor A, Heitzmann MT, Truss RW (2015) Inverse gas chromatography for natural fibre characterisation: Identification of the critical parameters to determine the Brunauer–Emmett–Teller specific surface area. J Chromatogr A 1425:273–279

    Article  Google Scholar 

  • Lerouxel O, Cavalier DM, Liepman AH, Keegstra K (2006) Biosynthesis of plant cell wall polysaccharides – a complex process. Curr Opin Plant Biol 9:1–10

    Article  Google Scholar 

  • Lilholt H, Lawther JM (2000) Natural organic fibres. In: Kelly A, Zweben C (eds) Comprehensive composite materials. Pergamon, Oxford, pp 303–325

    Chapter  Google Scholar 

  • Luner and Sandell (1969) The wetting of cellulose and wood hemicelluloses. J Polym Sci Pol Sym 28:115–142

    Article  Google Scholar 

  • Marques G, del Rio J, Gutierrez A (2010) Lipophilic extractives from several non woody lignocellulosic crops (flax, hemp, sisal, abaca) and their fate during alkaline pulping and TCF/ECF bleaching. Bioresour Technol 101:260–267

    Article  Google Scholar 

  • Misra MK, Ragland KW, Baker AJ (1993) Wood ash composition as a function of furnace temperature. Biomass Bioenerg 4:103–116

    Article  Google Scholar 

  • Montane D, Farriol X, Salvado J, Jollez P, Chornet E (1998) Fractionation of wheat straw by steam–explosion pre–treatment and alkali delignification. J Wood Chem Technol 18:171–191

    Article  Google Scholar 

  • Morvan C, Andème-Onzighi C, Girault R, Himmelsbach DS, Driouich A, Akin DE (2003) Building flax fibres: more than one brick in the walls. Plant Physiol Bioch 41:935–944

    Article  Google Scholar 

  • Müssig J, Fischer H, Graupner N, Drieling A (2010) Testing methods for measuring physical and mechanical fibre properties (plant and animal fibres). In: Müssig J (ed) Industrial applications of natural fibres: structure, properties and technical applications. Wiley, West Sussex, UK, pp 269–309

    Chapter  Google Scholar 

  • Notley SM, Norgren M (2010) Surface energy and wettability of spin–coated thin films of lignin isolated from wood. Langmuir 26(8):5484–5490

    Article  Google Scholar 

  • Orue A, Jauregi A, Peña-Rodriguez C, Labidi J, Eceiza A, Arbelaiz A (2015) The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Compos Part B Eng 73:132−138

    Google Scholar 

  • O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  • Ozdal T, Capanoglu E, Altay F (2013) A review on protein–phenolic interactions and associated changes. Food Res Int 51:954–970

    Article  Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    Article  Google Scholar 

  • Park JM, Quang ST, Hwang BS, DeVries KL (2006a) Interfacial evaluation of modified Jute and Hemp fibers/polypropylene (PP)–maleic anhydride polypropylene co–polymers (PP–MAPP) composites using micromechanical technique and nondestructive acoustic emission. Compos Sci Technol 66(15):2686–2699

    Article  Google Scholar 

  • Park S, Venditti RA, Jameel H, Pawlak JJ (2006b) Changes in pore size distribution during the drying of cellulose fibres as measured by differential scanning calorimetry. Carbohydr Polym 66:97–103

    Article  Google Scholar 

  • Prat R, Mosiniak M, Roland JC (2004) Architecture moléculaire de la paroi. In: La paroi primaire de la cellule végétale. Université Pierre & Marie Curie. http://www.snv.jussieu.fr/bmedia/paroi/architecture.htm. Accessed 22 Aug 2017

  • Qi X, Behrens BX, West PR, Mort AJ (1995) Solubilization and partial characterization of extensin fragments from cell walls of cotton suspension cultures (Evidence for a covalent cross–Link between extensin and pectin). Plant Physiol 108:1691–1701

    Article  Google Scholar 

  • Saxena IM, Brown RM Jr (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9–21

    Article  Google Scholar 

  • Shahzad A (2013) A study in physical and mechanical properties of hemp fibres. Adv Mater Sci Eng: 325085. https://doi.org/10.1155/2013/325085

  • Shen Q, Liu DS, Gao Y, Chen Y (2004) Surface properties of bamboo fiber and a comparison with cotton linter fibers. Colloid Surf B 35:193–195

    Article  Google Scholar 

  • Silva GGD, Guilbert S, Rouau X (2011) Successive centrifugal grinding and sieving of wheat straw. Powder Technol 208:266–270

    Article  Google Scholar 

  • Silva GGD, Couturier M, Berrin JG, Buléon A, Rouau X (2012) Effects of grinding processes on enzymatic degradation of wheat straw. Bioresour Technol 103:192–200

    Article  Google Scholar 

  • Sjöström E (1981) Wood polysaccharides. In: Wood chemistry: fundamentals and applications. Academic Press, New York, p 51

    Google Scholar 

  • Sjöström E (1993) Wood polysaccharides. In: Wood chemistry: fundamentals and applications, 2nd edn. Academic press, San Diego, pp 51–70, 292

    Google Scholar 

  • Sørensen A, Teller PJ, Hilstrom T, Ahring BK (2008) Hydrolysis of miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre–treatment and enzymatic treatment. Bioresour Technol 99:6602–6607

    Article  Google Scholar 

  • Takács E, Wojnárovits L, Borsa J, Cs Földváry, Hargittai P, Zöld O (1999) Effect of γ–irradiation on cotton–cellulose. Radiat Phys Chem 55:663–666

    Article  Google Scholar 

  • Takács E, Wojnárovits L, Cs Földváry, Hargittai P, Borsa J, Sajó I (2000) Effect of combined gamma–irradiation and alkali treatment on cotton–cellulose. Radiat Phys Chem 57:399–403

    Article  Google Scholar 

  • Terinte N, Ibbett R, Schuster KC (2011) Overview on native cellulose and microcrystalline cellulose I structure studied by X–ray diffraction (WAXD): comparison between measurement techniques. Lenzinger Ber 89:118–131

    Google Scholar 

  • Thakur R, Sarkar CR, Sarmah R (1999) Chemical composition of some varieties of ramie and their fibre characteristics. Indian J Fibre Text 24:276–278

    Google Scholar 

  • Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576

    Article  Google Scholar 

  • Van de Velde K, Kiekens P (1999) Wettability of natural fibres used as reinforcement for composites. Angew Makromol Chem 272:87–93

    Article  Google Scholar 

  • Van Hazendonka JM, van der Putten JC, Keurentjes JTF, Prins A (1993) A simple experimental method for the measurement of the surface tension of cellulosic fibres and its relation with chemical composition. Colloid Surface A 81:251–261

    Article  Google Scholar 

  • Van Oss CJ (2006) Interfacial forces in aqueous media. CRC Press, New York

    Google Scholar 

  • Varghese S, Kuriakose B, Thomas S (1994) Short sisal fibre reinforced natural rubber composites: high energy radiation, thermal and ozone degradation. Polym Degrad Stabil 44:55–61

    Article  Google Scholar 

  • Wahab R, Mustafa MT, Sudin M, Mohamed A, Rahman S, Samsi HW, Khalid I (2013) Extractives, holocellulose, α–cellulose, lignin and ash contents in cultivated tropical bamboo Gigantochloa brang, G. levis, G. scortechinii and G. wrayi. J Biol Sci 5:266–272

    Google Scholar 

  • Wang X, li X, Ren H (2010) Variation of microfibril angle and density in moso bamboo (Phyllostachys pubescens). J Trop Forest Sci 22(1):88–96

    Google Scholar 

  • Warwicker JO, Jeffries R, Colbran RL, Robinson RN (1996) A review of the literature on the effect of caustic soda and other swelling agents on the fine structure of cotton. Shirley Institute Pamphlet 93, St Ann’s Press, England

    Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988−994

    Google Scholar 

  • Westerlind BS, Berg JC (1988) Surface energy of untreated and surface-modified cellulose fibers. J Appl Polym Sci 36(3):523–534

    Article  Google Scholar 

  • Yan L, Chouw N, Jayaraman K (2014) Flax fibre and its composites—A review. Compos Part B-Eng 56:296–317

    Article  Google Scholar 

  • Yu Y, Fei B, Zhang B, Yu X (2007) Cell–wall mechanical properties of bamboo investigated by in–situ imaging nanoindentation. Wood Fiber Sci 39:527–535

    Google Scholar 

  • Yu H, Liu R, Shen D, Wu Z, Huang Y (2008) Arrangement of cellulose microfibrils in the wheat straw cell wall. Carbohyd Polym 72:122–127

    Article  Google Scholar 

  • Zhao H, Kwak JH, Zhang ZC, Brown HM, Arey BW, Holladay JE (2007) Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydr Polym 68:235–241

    Article  Google Scholar 

  • Zhuang RC, Burghardt T, Mäder E (2010) Study on interfacial adhesion strength of single glass fibre/polypropylene model composites by altering the nature of the surface of sized glass fibres. Compos Sci Technol 70:1523–1529

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Le Moigne .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Le Moigne, N., Otazaghine, B., Corn, S., Angellier-Coussy, H., Bergeret, A. (2018). Introduction on Natural Fibre Structure: From the Molecular to the Macrostructural Level. In: Surfaces and Interfaces in Natural Fibre Reinforced Composites. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-71410-3_1

Download citation

Publish with us

Policies and ethics