Skip to main content

Research and Development of Metal-Air Fuel Cells

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Energy ((LNEN,volume 63))

Abstract

Metal-air fuel cells (MAFCs) are a kind of electrochemical devices that can directly convert the chemical energy stored in metals fuels (e.g., Mg, Al or Zn) or their alloys into electricity. Strictly, MAFCs and metal-air batteries are different, that is, the former one can continue to produce electricity by the metal fuels replacement, and the latter one is only one-time use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.-S. Lee, S. Tai Kim, R. Cao et al., Metal-air batteries with high energy density: Li-air versus Zn-Air. Adv. Energy Mater. 1(1), 34–50 (2011)

    Article  Google Scholar 

  2. M.G. Medeiros, R.R. Bessette, C.M. Deschenes et al., Optimization of the magnesium-solution phase catholyte semi-fuel cell for long duration testing. J. Power Sources 96(1), 236–239 (2001)

    Article  Google Scholar 

  3. T.B. Reddy, Linden’s Handbook of Batteries, 4th edn (McGraw-Hill Companies, New York, 2011)

    Google Scholar 

  4. F.R. McLarnon, E.J. Cairns, The secondary alkaline zinc electrode. J. Electrochem. Soc. 138(2), 645–656 (1991)

    Article  Google Scholar 

  5. V. Caramia, B. Bozzini, Materials science aspects of zinc–air batteries: a review. Mater. Renew. Sustain. Energy 3(2), 28 (2014)

    Article  Google Scholar 

  6. J. Fu, Z.P. Cano, M.G. Park et al., Electrically rechargeable Zinc-Air batteries: progress, challenges, and perspectives. Adv. Mater. 29(7), 1604685 (2017)

    Article  Google Scholar 

  7. S. Thomas, N. Birbilis, M.S. Venkatraman, et al., Self-repairing oxides to protect zinc: review, discussion and prospects. Corros. Sci. 69(Supplement C), 11–22 (2013)

    Google Scholar 

  8. S. Szpak, C. Gabriel, The Zn-KOH system: the solution-precipitation path for anodic ZnO formation. J. Electrochem. Soc. 126(11), 1914–1923 (1979)

    Article  Google Scholar 

  9. M.B. Liu, G. Cook, N. Yao, Passivation of zinc anodes in KOH electrolytes. J. Electrochem. Soc. 128(8), 1663–1668 (1981)

    Article  Google Scholar 

  10. R.J. Wang, Z.H. Yang, B. Yang et al., Superior cycle stability and high rate capability of Zn-Al-In-hydrotalcite as negative electrode materials for Ni-Zn secondary batteries. J. Power Sources 251, 344–350 (2014)

    Article  Google Scholar 

  11. Z. Zhang, Z. Yang, R. Wang et al., Electrochemical performance of ZnO/SnO2 composites as anode materials for Zn/Ni secondary batteries. Electrochim. Acta 134, 287–292 (2014)

    Article  Google Scholar 

  12. Y.F. Yuan, L.Q. Yu, H.M. Wu et al., Electrochemical performances of Bi based compound film-coated ZnO as anodic materials of Ni-Zn secondary batteries]. Electrochim. Acta 56(11), 4378–4383 (2011)

    Article  Google Scholar 

  13. T. Wang, Z. Yang, J. Huang et al., The electrochemical performances of La2O3-doped ZnO in Ni-Zn secondary batteries. Electrochim. Acta 112, 104–110 (2013)

    Article  Google Scholar 

  14. X.G. Zhang, Secondary batteries—zinc system|zinc electrodes: overview, in Garche, Jürgen. In Encyclopedia of Electrochemical Power Sources, ed. by J. Garche (Elsevier, Amsterdam, 2009), pp. 454–468. https://doi.org/10.1016/B978-044452745-5.00166-0

  15. X.G. Zhang, Fibrous zinc anodes for high power batteries. J. Power Sources 163(1), 591–597 (2006)

    Article  Google Scholar 

  16. M.N. Masri, A.A. Mohamad, Effect of adding carbon black to a porous zinc anode in a zinc-air battery. J. Electrochem. Soc. 160(4), A715–A721 (2013)

    Article  Google Scholar 

  17. J. Fu, D.U. Lee, F.M. Hassan et al., Flexible high-energy polymer-electrolyte-based rechargeable zinc-air batteries. Adv. Mater. 27(37), 5617–5622 (2015)

    Article  Google Scholar 

  18. Q. Tian, X. Guo, Manufacturing microporous foam zinc materials with high porosity by electrodeposition. J. Wuhan Univ. Technol. Mater. Sci. Ed. 26(5), 843–846 (2011)

    Google Scholar 

  19. Z. Yan, E. Wang, L. Jiang et al., Superior cycling stability and high rate capability of three-dimensional Zn/Cu foam electrodes for zinc-based alkaline batteries. RSC Adv. 5(102), 83781–83787 (2015)

    Article  Google Scholar 

  20. Y. Cheng, Q. Lai, X. Li et al., Zinc-nickel single flow batteries with improved cycling stability by eliminating zinc accumulation on the negative electrode. Electrochim. Acta 145, 109–115 (2014)

    Article  Google Scholar 

  21. S. Smedley, X.G. Zhang, Secondary batteries—metal-air systems|zinc–air: hydraulic recharge, in In Encyclopedia of Electrochemical Power Sources, ed. by J. Garche (Elsevier, Amsterdam, 2009), pp. 393–403. https://doi.org/10.1016/B978-044452745-5.00168-4

  22. Q. Li, N.J. Bjerrum, Aluminum as anode for energy storage and conversion: a review. J. Power Sources 110(1), 1–10 (2002)

    Article  Google Scholar 

  23. D. Egan, C.P. De León, R. Wood et al., Developments in electrode materials and electrolytes for aluminium–air batteries. J. Power Sources 236, 293–310 (2013)

    Article  Google Scholar 

  24. M. Doche, F. Novel-Cattin, R. Durand et al., Characterization of different grades of aluminum anodes for aluminum/air batteries. J. Power Sources 65(1–2), 197–205 (1997)

    Article  Google Scholar 

  25. Y.-J. Cho, I.-J. Park, H.-J. Lee et al., Aluminum anode for aluminum–air battery—Part I: Influence of aluminum purity. J. Power Sources 277, 370–378 (2015)

    Article  Google Scholar 

  26. M. Nestoridi, D. Pletcher, R.J.K. Wood et al., The study of aluminium anodes for high power density Al/air batteries with brine electrolytes. J. Power Sources 178(1), 445–455 (2008)

    Article  Google Scholar 

  27. C. Tuck, J. Hunter, G. Scamans, The electrochemical behavior of Al-Ga alloys in alkaline and neutral electrolytes. J. Electrochem. Soc. 134(12), 2970–2981 (1987)

    Article  Google Scholar 

  28. W. Wilhelmsen, T. Arnesen, Ø. Hasvold et al., The electrochemical behaviour of Al In alloys in alkaline electrolytes. Electrochim. Acta 36(1), 79–85 (1991)

    Article  Google Scholar 

  29. E.J. Rudd, D.W. Gibbons, High energy density aluminum/oxygen cell. J. Power Sources 47(3), 329–340 (1994)

    Article  Google Scholar 

  30. J.T.B. Gundersen, A. Aytaç, J.H. Nordlien et al., Effect of heat treatment on electrochemical behaviour of binary aluminium model alloys. Corros. Sci. 46(3), 697–714 (2004)

    Article  Google Scholar 

  31. I.-J. Park, S.-R. Choi, J.-G. Kim, Aluminum anode for aluminum-air battery–Part II: Influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution. J. Power Sources 357, 47–55 (2017)

    Article  Google Scholar 

  32. P.W. Jeffrey, W. Halliop, F.N. Smith, Aluminum Anode Alloy (1988)

    Google Scholar 

  33. J.A. Hunter, G.M. Scamans, W.B. O’callaghan, et al., Aluminium Batteries (1991)

    Google Scholar 

  34. C. Shu, E. Wang, L. Jiang et al., Studies on palladium coated titanium foams cathode for Mg–H2O2 fuel cells. J. Power Sources 208, 159–164 (2012)

    Article  Google Scholar 

  35. C.Z. Shu, E.D. Wang, L.H. Jiang et al., High performance cathode based on carbon fiber felt for magnesium-air fuel cells. Int. J. Hydrogen Energy 38(14), 5885–5893 (2013)

    Article  Google Scholar 

  36. Q. Liu, Z. Yan, E. Wang et al., A high-specific-energy magnesium/water battery for full-depth ocean application. Int. J. Hydrogen Energy 42(36), 23045–23053 (2017)

    Article  Google Scholar 

  37. K. Gusieva, C.H.J. Davies, J.R. Scully et al., Corrosion of magnesium alloys: the role of alloying. Int. Mater. Rev. 60(3), 169–194 (2015)

    Article  Google Scholar 

  38. T.R. Zhang, Z.L. Tao, J. Chen, Magnesium-air batteries: from principle to application. Mater. Horiz. 1(2), 196–206 (2014)

    Article  Google Scholar 

  39. H.Q. Xiong, H.L. Zhu, J. Luo et al., Effects of heat treatment on the discharge behavior of Mg-6wt.%Al-1wt.%Sn alloy as anode for magnesium-air batteries. J. Mater. Eng. Perform. 26(6), 2901–2911 (2017)

    Article  Google Scholar 

  40. H.Q. Xiong, K. Yu, X.A. Yin et al., Effects of microstructure on the electrochemical discharge behavior of Mg-6 wt%Al-1 wt%Sn alloy as anode for Mg-air primary battery. J. Alloy. Compd. 708, 652–661 (2017)

    Article  Google Scholar 

  41. R.-C. Zeng, L. Sun, Y.-F. Zheng et al., Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank’s solution: the influence of microstructural features. Corros. Sci. 79, 69–82 (2014)

    Article  Google Scholar 

  42. W. Xu, N. Birbilis, G. Sha et al., A high-specific-strength and corrosion-resistant magnesium alloy. Nat. Mater. (2015). https://doi.org/10.1038/nmat4435

    Google Scholar 

  43. H. Fukuda, J.A. Szpunar, K. Kondoh et al., The influence of carbon nanotubes on the corrosion behaviour of AZ31B magnesium alloy. Corros. Sci. 52(12), 3917–3923 (2010)

    Article  Google Scholar 

  44. G.L. Song, A. Atrens, Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1(1), 11–33 (1999)

    Article  Google Scholar 

  45. N.G. Wang, R.C. Wang, Y. Feng et al., Discharge and and corrosion behaviour of Mg-Li-Al-Ce-Y-Zn alloy as the anode for Mg-air battery. Corros. Sci. 112, 13–24 (2016)

    Article  Google Scholar 

  46. Y. Li, H. Dai, Recent advances in zinc-air batteries. Chem. Soc. Rev. 43(15), 5257–5275 (2014)

    Article  Google Scholar 

  47. Q. Sphere, http://qsinano.com/

  48. M. Maja, C. Orecchia, M. Strano et al., Effect of structure of the electrical performance of gas diffusion electrodes for metal air batteries. Electrochim. Acta 46(2), 423–432 (2000)

    Article  Google Scholar 

  49. S.-W. Eom, C.-W. Lee, M.-S. Yun et al., The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes. Electrochim. Acta 52(4), 1592–1595 (2006)

    Article  Google Scholar 

  50. K. Tomantschger, R. Findlay, M. Hanson et al., Degradation modes of alkaline fuel cells and their components. J. Power Sources 39(1), 21–41 (1992)

    Article  Google Scholar 

  51. L. Maiche (1878)

    Google Scholar 

  52. H.Q. Li, G.Q. Sun, N. Li et al., Design and preparation of highly active Pt-Pd/C catalyst for the oxygen reduction reaction. J. Phys. Chem. C 111(15), 5605–5617 (2007)

    Article  Google Scholar 

  53. G.L. Li, L.H. Jiang, Q. Jiang et al., Preparation and characterization of PdxAgy/C electrocatalysts for ethanol electrooxidation reaction in alkaline media. Electrochim. Acta 56(22), 7703–7711 (2011)

    Article  Google Scholar 

  54. L.Z. Yuan, Z. Yan, L.H. Jiang et al., Gold-iridium bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. J. Energy Chem. 25(5), 805–810 (2016)

    Article  Google Scholar 

  55. L.Z. Yuan, L.H. Jiang, T.R. Zhang et al., Electrochemically synthesized freestanding 3D nanoporous silver electrode with high electrocatalytic activity. Catal. Sci. Technol. 6(19), 7163–7171 (2016)

    Article  Google Scholar 

  56. D.U. Lee, P. Xu, Z.P. Cano et al., Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries. J. Mater. Chem. A 4(19), 7107–7134 (2016)

    Article  Google Scholar 

  57. J.S. Guo, A. Hsu, D. Chu et al., Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions. J. Phys. Chem. C 114(10), 4324–4330 (2010)

    Article  Google Scholar 

  58. J.J. Han, N. Li, T.Y. Zhang, Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte. J. Power Sources 193(2), 885–889 (2009)

    Article  Google Scholar 

  59. V. Neburchilov, H. Wang, J.J. Martin et al., A review on air cathodes for zinc–air fuel cells. J. Power Sources 195(5), 1271–1291 (2010)

    Article  Google Scholar 

  60. J. Liu, J. Liu, W. Song et al., The role of electronic interaction in the use of Ag and Mn3O4 hybrid nanocrystals covalently coupled with carbon as advanced oxygen reduction electrocatalysts. J. Mater. Chem. A 2(41), 17477–17488 (2014)

    Article  Google Scholar 

  61. Y. Wang, X. Ma, L. Lu et al., Carbon supported MnOx–Co3O4 as cathode catalyst for oxygen reduction reaction in alkaline media. Int. J. Hydrogen Energy 38(31), 13611–13616 (2013)

    Article  Google Scholar 

  62. J. Lamminen, J. Kivisaari, M.J. Lampinen et al., Preparation of air electrodes and long run tests. J. Electrochem. Soc. 138(4), 905–908 (1991)

    Article  Google Scholar 

  63. J. Liu, L.H. Jiang, Q.W. Tang et al., Coupling effect between cobalt oxides and carbon for oxygen reduction reaction. ChemSusChem 5(12), 2315–2318 (2012)

    Article  Google Scholar 

  64. Y. Liang, Y. Li, H. Wang et al., Co(3)O(4) nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780–786 (2011)

    Article  Google Scholar 

  65. Y. Liang, H. Wang, P. Diao et al., Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 134(38), 15849–15857 (2012)

    Article  Google Scholar 

  66. L.Z. Gu, L.H. Jiang, X.N. Li et al., A Fe-N-C catalyst with highly dispersed iron in carbon for oxygen reduction reaction and its application in direct methanol fuel cells. Chin. J. Catal. 37(4), 539–548 (2016)

    Article  Google Scholar 

  67. S.J. Guo, S. Zhang, S.H. Sun, Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52(33), 8526–8544 (2013)

    Article  Google Scholar 

  68. M. Ferrandon, A.J. Kropf, D.J. Myers et al., Multitechnique characterization of a polyaniline-iron-carbon oxygen reduction catalyst. J. Phys. Chem. C 116(30), 16001–16013 (2012)

    Article  Google Scholar 

  69. X. Zhang, Secondary batteries—zinc system|zinc electrodes: overview, in Encyclopedia of Electrochemical Power Sources (2009)

    Google Scholar 

  70. X.-Y. Liu, X.-Z. Xu, Mesoscopic numerical computation model of air-diffusion electrode of metal/air batteries. Appl. Math. Mech. 34(5), 571–576 (2013)

    Article  Google Scholar 

  71. S. Zaromb, The use and behavior of aluminum anodes in alkaline primary batteries. J. Electrochem. Soc. 109(12), 1125–1130 (1962)

    Article  Google Scholar 

  72. R.J. Coin, Metal hydroxide crystallized and filter (1991)

    Google Scholar 

  73. T. Zhang, Z. Tao, J. Chen, Magnesium-air batteries: from principle to application. Mater. Horiz. 1(2), 196–206 (2014)

    Article  Google Scholar 

  74. T.B. Reddy, Linden’s Handbook of batteries, 4th edn. (2011)

    Google Scholar 

  75. M. Mokhtar, M.Z.M. Talib, E.H. Majlan, et al., Recent developments in materials for aluminum–air batteries: a review. J. Ind. Eng. Chem. 32(Supplement C), 1–20 (2015)

    Google Scholar 

  76. S. Sathyanarayana, N. Munichandraiah, A new magnesium—air cell for long-life applications. J. Appl. Electrochem. 11(1), 33–39 (1981)

    Article  Google Scholar 

  77. K.F. Blurton, A.F. Sammells, Metal/air batteries: their status and potential—a review. J. Power Sources 4(4), 263–279 (1979)

    Article  Google Scholar 

  78. C.-C. Yang, S.-J. Lin, Alkaline composite PEO–PVA–glass-fibre-mat polymer electrolyte for Zn–air battery. J. Power Sources 112(2), 497–503 (2002)

    Article  Google Scholar 

  79. Z. Zhang, C. Zuo, Z. Liu, et al., All-solid-state Al–air batteries with polymer alkaline gel electrolyte. J. Power Sources, 251(Supplement C), 470–475 (2014)

    Google Scholar 

  80. D.D. Macdonald, C. English, Development of anodes for aluminium/air batteries—solution phase inhibition of corrosion. J. Appl. Electrochem. 20(3), 405–417 (1990)

    Article  Google Scholar 

  81. R.S.M. Patnaik, S. Ganesh, G. Ashok et al., Heat management in aluminium/air batteries: sources of heat. J. Power Sources 50(3), 331–342 (1994)

    Article  Google Scholar 

  82. A.M. Abdel-Gaber, E. Khamis, H. Abo-Eldahab et al., Novel package for inhibition of aluminium corrosion in alkaline solutions. Mater. Chem. Phys. 124(1), 773–779 (2010)

    Article  Google Scholar 

  83. N.A.F. Al-Rawashdeh, A.K. Maayta, Cationic surfactant as corrosion inhibitor for aluminum in acidic and basic solutions. Anti-Corros. Methods Mater. 52(3), 160–166 (2005)

    Article  Google Scholar 

  84. Z. Sun, H. Lu, Q. Hong et al., Evaluation of an alkaline electrolyte system for Al-Air battery. Ecs Electrochem. Lett. 4(12), A133–A136 (2015)

    Article  Google Scholar 

  85. D. Gelman, I. Lasman, S. Elfimchev, et al., Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications. J. Power Sources, 285(Supplement C), 100–108 (2015)

    Google Scholar 

  86. Y. Nie, J. Gao, E. Wang, et al., An effective hybrid organic/inorganic inhibitor for alkaline aluminum-air fuel cells. Electrochimica Acta, 248(Supplement C), 478–485 (2017)

    Google Scholar 

  87. J.S. Lee, T.K. Sun, R. Cao et al., Metal-air batteries with high energy density: Li–Air versus Zn–Air. Adv. Energy Mater. 1(1), 34–50 (2011)

    Article  Google Scholar 

  88. J. Goldstein, I. Brown, B. Koretz, New developments in the Electric Fuel Ltd. zinc/air system. J. Power Sources 80(1–2), 171–179 (1999)

    Article  Google Scholar 

  89. T. Huh, G. Savaskan, J.W. Evans, Further studies of a zinc-air cell employing a packed bed anode part II: regeneration of zinc particles and electrolyte by fluidized bed electrodeposition. J. Appl. Electrochem. 22(10), 916–921 (1992)

    Article  Google Scholar 

  90. G. Savaskan, T. Huh, J.W. Evans, Further studies of a zinc-air cell employing a packed bed anode part I: discharge. J. Appl. Electrochem. 22(10), 909–915 (1992)

    Article  Google Scholar 

  91. S.I. Smedley, X.G. Zhang, A regenerative zinc–air fuel cell. J. Power Sources 165(2), 897–904 (2007)

    Article  Google Scholar 

  92. X.G. Zhang, Secondary batteries—zinc system|zinc electrodes: overview. Encycl. Electrochem. Power Sources 15(7), 454–468 (2009)

    Article  Google Scholar 

  93. A.V. Ilyukhina, B.V. Kleymenov, A.Z. Zhuk, Development and study of aluminum-air electrochemical generator and its main components. J. Power Sources, 342 (2017)

    Google Scholar 

  94. MAGPOWER, http://www.magpowersystems.com/

  95. Ø. Hasvold, H. Henriksen, E. Melv˦R, et al., Sea-water battery for subsea control systems. J. Power Sources 65(1), 253–261 (1997)

    Google Scholar 

  96. L.F. Li, Hybridized magnesium air fuel cell with Ni-Zn battery or electrochemical capacitor as the ideal energy source for USV sensor payloads (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erdong Wang or Gongquan Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, E., Yan, Z., Liu, Q., Gao, J., Liu, M., Sun, G. (2018). Research and Development of Metal-Air Fuel Cells. In: An, L., Zhao, T. (eds) Anion Exchange Membrane Fuel Cells. Lecture Notes in Energy, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-71371-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71371-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71370-0

  • Online ISBN: 978-3-319-71371-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics