Skip to main content

Mathematical Modeling of Alkaline Anion Exchange Membrane Fuel Cells

  • Chapter
  • First Online:
Book cover Anion Exchange Membrane Fuel Cells

Part of the book series: Lecture Notes in Energy ((LNEN,volume 63))

Abstract

The modeling work on the alkaline anion exchange membrane (AEM) fuel cell has been greatly facilitated by the rapid development of AEM fuel cell in recent years. Mathematical modeling has been widely recognized as a powerful tool to quantify the physical and electrochemical processes inside the fuel cells. In this study, modeling researches on the AEM fuel cell fed by various fuels have been summarized and discussed. General modeling formulation for AEM fuel cell has been comprehensively introduced. The relevant modeling results with various cell design parameters and operational conditions are revealed and analyzed accordingly. Moreover, the comparison of the operating characteristics of AEM fuel cells fueled by hydrogen (H) and liquid alcohols is also carried out in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a :

Water activity, anode

Anode :

Anode

A :

Geometric area of the fuel cell (m2)

c :

Mole concentration (mol m−3), cathode

Cathode :

Cathode

D :

Diffusion coefficient (m2 s−1)

E :

Voltage (V)

EW :

Equivalent weight of membrane

F :

Faraday’s contant (96487.0 C mol−1)

G :

Free energy (J mol−1)

h :

Latent heat, J kg−1

J :

Current density (A cm−2)

J 0 :

Volumetric exchange current density (A m−3)

k :

Electrical conductivity (S m−1)

K :

Permeability (m2)

m :

Membrane

M :

Relative mole mass (kg mol−1)

n :

Moles of electrons production per mole of reactants consumption

\(n_{d}\) :

Electroosmosis coefficient (H2O/ OH)

N :

The change of moles of gas (mol), the flux of the liquid water in the fuel cell component (mol m−2 s−1)

p :

Pressure (Pa)

poro :

Porous media

r :

Porous radius (m)

r i :

Order of the reaction

R :

Ideal gas constant (8.314 J K−1 mol−1) internal resistance of cell \(\left( {{\Omega} \,{\text{m}}^{2} } \right)\) electrochemical reaction rate (A m−3)

Re :

Reynolds number

RH :

Relative humidity

s :

Volume fraction

S :

Entropy (J mol−1 K−1), Source term (kg m−3 s−1, mol m−3 s−1)

ST :

Stoichiometric ratio

T :

Temperature (K)

\(\overrightarrow {u}\) :

Velocity (m s−1)

x, y, z :

Coordinate position (m)

X :

Mole fraction

Y :

Mass fraction

α :

Apparent transfer coefficient

β :

Liquid water volume fraction supplied for cathode inlet

γ:

Activity coefficient, water phase change rate (s−1)

δ :

Thickness (m)

ε :

Porosity

ζ :

Water transfer rate (s−1)

η :

Internal resistance of cell \(\left( {{\Omega} \,{\text{m}}^{2} } \right)\), voltage loss

θ :

Contact angle (°)

ι :

Interfacial drag coefficient

λ :

Water content in polymer exchange membrane

μ :

Dynamic viscosity (kg m−1 s−1)

ρ :

Mass density (kg m−3) electrical resistivity (Ω m)

σ :

Conductivity (S m−1)

φ :

Potential (V)

ω :

Volume fraction of ionomer in catalyst layer

0:

Proper value standard condition

a :

Anode

act :

Activation loss parameter

aver :

Average

AAEM-CL :

Interface between the membrane and catalyst layer

c :

Cathode,capillary pressure

ch :

Flow channel

CL :

Catalyst layer

e :

Electrode

eff :

Effective parameter

equi :

Equilibrium

evap :

Evaporation

EOD :

Electro-osmotic drag

g :

Gas

GDL :

Gas diffusion layer

H 2 :

Hydrogen

H 2 O :

Water

i :

The composition of the gas mixture

lh :

Latent heat

lq :

Liquid water

ion :

Electrical

m :

Membrane

me :

Methanol

mw :

Membrane water

mv :

Methanol vapor

m-l :

Membrane water to liquid (vice versa)

ohm :

Ohmic parameter

O 2 :

Oxygen

P :

Plate

r :

Reversible

ref :

Reference condition

s :

Electrode

sat :

Saturation state

total :

Total

vap :

Water vapor

v-l :

Vapor to liquid (vice versa)

References

  1. T. Zhou, R. Shao, S. Chen, X. He, J. Qiao, J. Zhang, A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells. J. Power Sources 293, 946–975 (2015)

    Article  Google Scholar 

  2. G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review. J. Membr. Sci. 377, 1–35 (2011)

    Google Scholar 

  3. I. Kruusenberg, L. Matisen, Q. Shah, A.M. Kannan, K. Tammeveski, Non-platinum cathode catalysts for alkaline membrane fuel cells. Int. J. Hydrogen Energy 37, 4406–4412 (2012)

    Article  Google Scholar 

  4. Y.S. Kang, Y. Heo, P. Kim, S.J. Yoo, Preparation and characterization of Cu–N–C electrocatalysts for oxygen reduction reaction in alkaline anion exchange membrane fuel cells. J. Ind. Eng. Chem. 52, 35–41 (2017)

    Article  Google Scholar 

  5. S. Carrion-Satorre, M. Montiel, R. Escudero-Cid, J.L.G. Fierro, Performance of carbon-supported palladium and palladiumeruthenium catalysts for alkaline membrane direct ethanol fuel cells. Int. J. Hydrogen Energy 41, 8954–8962 (2016)

    Article  Google Scholar 

  6. S. Markgraf, M. Hörenz, T. Schmiel, W. Jehle, J. Lucas, N. Henn, Alkaline fuel cells running at elevated temperature for regenerative fuel cell system applications in spacecrafts. J. Power Sources 201, 236–242 (2012)

    Article  Google Scholar 

  7. I. Verhaert, G. Mulder, M.D. Paepe, Evaluation of an alkaline fuel cell system as a micro-CHP. Energ. Convers. Manage. 126, 434–445 (2016)

    Article  Google Scholar 

  8. H.-W. Wu, A review of recent development: transport and performance modeling of PEM fuel cells. Appl. Energy 165, 81–106 (2016)

    Article  Google Scholar 

  9. R.K.A. Rasheed, L. Quan, C. Zhang, S.H. Chan, A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs). Int. J. Hydrogen Energy 42, 3142–3165 (2017)

    Google Scholar 

  10. D.M. Fadzillah, M.I. Rosli, M.Z.M. Talib, S.K. Kamarudin, W.R.W. Daud, Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells. Renew. Sustain. Energy Rev. 77, 1001–1009 (2017)

    Article  Google Scholar 

  11. B. Timurkutluk, M.D. Mat, A review on micro-level modeling of solid oxide fuel cells. Int. J. Hydrogen Energy 41, 9968–9981 (2016)

    Google Scholar 

  12. S.A. Hajimolana, M.A. Hussain, W.M.A.W. Daud, M. Soroush, A. Shamiri, Mathematical modeling of solid oxide fuel cells: A review. Renew. Sustain. Energy Rev. 15, 1893–1917 (2011)

    Google Scholar 

  13. M. Peksen, Numerical thermomechanical modelling of solid oxide fuel cells. Prog. Energy Combust. Sci. 48, 1–20 (2015)

    Article  Google Scholar 

  14. I. Verhaert, M.D. Paepe, G. Mulder, Thermodynamic model for an alkaline fuel cell. J. Power Sources 193, 233–240 (2009)

    Google Scholar 

  15. G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review. J. Membr. Sci. 377, 1–35 (2011)

    Google Scholar 

  16. T. Zhou, R. Shao, S. Chen, X. He, J. Qiao, J. Zhang, A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells. J. Power Sources 293, 946–975 (2015)

    Article  Google Scholar 

  17. K. Jiao, P. He, Q. Du, Y. Yin, Three-dimensional multiphase modeling of alkaline anion exchange membrane fuel cell. Int. J. Hydrogen Energy 39, 5981–5995 (2014)

    Google Scholar 

  18. H. Deng, D. Wang, R. Wang, X. Xie, Y. Yin, Q. Du, K. Jiao, Effect of electrode design and operating condition on performance of hydrogen alkaline membrane fuel cell. Appl. Energy 183, 1272–1278 (2016)

    Google Scholar 

  19. B.S. Machado, N. Chakraborty, P.K. Das, Influences of flow direction, temperature and relative humidity on the performance of a representative anion exchange membrane fuel cell: A computational analysis. Int. J. Hydrogen Energy 42, 6310–6323 (2017)

    Google Scholar 

  20. D.R. Dekel, I.G. Rasin, M. Page, S. Brandon, Steady state and transient simulation of anion exchange membrane fuel cells. J. Power Sources. https://doi.org/10.1016/j.jpowsour.2017.07.012

  21. E.M. Sommer, L.S. Martins, J.V.C. Vargas, J.E.F.C. Gardolinski, J.C. Ordonez, C.E.B. Marino, Alkaline membrane fuel cell (AMFC) modeling and experimental validation. J. Power Sources 213, 16–30 (2012)

    Article  Google Scholar 

  22. S. Huo, H. Deng, Y. Chang, K. Jiao, Water management in alkaline anion exchange membrane fuel cell anode. Int. J. Hydrogen Energy 37, 18389–18402 (2012)

    Article  Google Scholar 

  23. H. Deng, S. Huo, Y. Chang, Y. Zhou, K. Jiao, Transient analysis of alkaline anion exchange membrane fuel cell anode. Int. J. Hydrogen Energy 38, 6509–6525 (2013)

    Article  Google Scholar 

  24. K. Jiao, S. Huo, M. Zu, D. Jiao, J. Chen, Q. Du, An analytical model for hydrogen alkaline anion exchange membrane fuel cell. Int. J. Hydrogen Energy 40, 3300–3312 (2015)

    Google Scholar 

  25. H.S. Shiau, I.V. Zenyuk, A.Z. Weber, Water management in an alkaline-exchange-membrane fuel cell. ECS Trans. 69(17), 985–994 (2015)

    Article  Google Scholar 

  26. Y.-J. Sohn, J.I. Choi, K. Kim, Numerical analysis on water transport in alkaline anion exchange membrane fuel cells. Electrochemistry 83(2), 80–83 (2015)

    Article  Google Scholar 

  27. R.B. Kaspar, M.P. Letterio, J.A. Wittkopf, K. Gong, S. Gu, Y. Yan, Manipulating water in high-performance hydroxide exchange membrane fuel cells through asymmetric humidification and wetproofing. J. Electrochem. Soc. 162(6), F483–F488 (2015)

    Article  Google Scholar 

  28. H. Deng, D. Wang, X. Xie, Y. Zhou, Y. Yin, Q. Du, K. Jiao, Modeling of hydrogen alkaline membrane fuel cell with interfacial effect and water management optimization. Renew. Energy 91, 166–177 (2016)

    Google Scholar 

  29. S. Huo, J.W. Park, P. He, D. Wang, K. Jiao, Analytical modeling of liquid saturation jump effect for hydrogen alkaline anion exchange membrane fuel cell. Int. J. Heat Mass Tran. 112, 891–902 (2017)

    Google Scholar 

  30. S. Peng, J. Gong, X. Xu, P.-C. Sui, S. Lu, Y. Xiang, Numerical and experimental analyses on deviated concentration loss with alkaline anion-exchange membrane fuel cells. J. Phys. Chem. C 119(43), 24276–24281 (2015)

    Google Scholar 

  31. H. Deng, D. Jiao, M. Zu, J. Chen, K. Jiao, X. Huang, Modeling of passive alkaline membrane direct methanol fuel cell. Electrochim. Acta 154, 430–446 (2015)

    Article  Google Scholar 

  32. B. Wang, Y. Zhou, Q. Du, Y. Yin, K. Jiao, Transient investigation of passive alkaline membrane direct methanol fuel cell. Appl. Therm. Eng. 100, 1245–1258 (2016)

    Google Scholar 

  33. C. Weinzierl, U. Krewera, Model-based analysis of water management at anode of alkaline direct methanol fuel cells. Chem. Eng. Sci. 143, 181–193 (2016)

    Article  Google Scholar 

  34. C. Weinzierl, U. Krewer, Model-based analysis of water management in alkaline direct methanol fuel cells. J. Power Sources 268, 911–921 (2014)

    Article  Google Scholar 

  35. H. Deng, J. Chen, K. Jiao, X. Huang, An analytical model for alkaline membrane direct methanol fuel cell. Int. J. Heat Mass Tran. 74, 376–390 (2014)

    Google Scholar 

  36. L. An, Z.H. Chai, L. Zeng, P. Tan, T.S. Zhao, Mathematical modeling of alkaline direct ethanol fuel cells. Int. J. Hydrogen Energy 38, 14067–14075 (2013)

    Article  Google Scholar 

  37. H. Bahrami, A. Faghri, Multi-layer membrane model for mass transport in a direct ethanol fuel cell using an alkaline anion exchange membrane. J. Power Sources 218, 286–296 (2012)

    Article  Google Scholar 

  38. W.W. Yang, M.Y. Lu, Y.L. He, Performance study of an alkaline direct ethanol fuel cell with a reduced two-dimensional mass transport model. Int. J. Hydrogen Energy 41, 20693–20708 (2016)

    Article  Google Scholar 

  39. S. Abdullah, S.K. Kamarudin, U.A. Hasran, M.S. Masdar, W.R.W. Daud, Electrochemical kinetic and mass transfer model for direct ethanol alkaline fuel cell (DEAFC). J. Power Sources 320, 111–119 (2016)

    Article  Google Scholar 

  40. S. Abdullah, S.K. Kamarudin, U.A. Hasran, M.S. Masdar, W.R.W. Daud, Modeling and simulation of a direct ethanol fuel cell: An overview. J. Power Sources 262, 401–406 (2014)

    Google Scholar 

  41. X. Han, D.J. Chadderdon, J. Qi, L. Xin, W. Li, W. Zhou, Numerical analysis of anion-exchange membrane direct glycerol fuel cells under steady state and dynamic operations. Int. J. Hydrogen Energy 39, 19767–19779 (2014)

    Article  Google Scholar 

  42. L. An, R. Chen, Mathematical modeling of direct formate fuel cells. Appl. Therm. Eng. 124, 232–240 (2017)

    Article  Google Scholar 

  43. A.A. Kulikovsky, Analytical Modeling of Fuel cells, 1st edn. (Elsevier, 2010)

    Google Scholar 

  44. D.A.G. Bruggeman, The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotopic substances. Ann. Phys. 24, 636–664 (1935)

    Google Scholar 

  45. Q. Duan, S. Ge, C.-Y. Wang, Water uptake, ionic conductivity and swelling properties of anion-exchange membrane. J. Power Sources 243, 773–778 (2013)

    Article  Google Scholar 

  46. F.A.L. Dullien, Porous Media: fluid Transport and Pore Structure, 2nd ed. (Academic Press, San Diego, 1992)

    Google Scholar 

  47. K.S. Udell, Heat transfer in porous media considering phase change and capillarity-the heat pipe effect. Int. J. Heat Mass Tran. 28(2), 485–495 (1985)

    Google Scholar 

  48. E.H. Yu, K. Scott, Development of direct methanol alkaline fuel cells using anion exchange membranes. J. Power Sources 137, 248–256 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China for Excellent Young Scholars (Grant No. 51622606), and the Key Program of Natural Science Foundation of Tianjin (China) (Grant No. 16JCZDJC30800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Jiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huo, S., Jiao, K. (2018). Mathematical Modeling of Alkaline Anion Exchange Membrane Fuel Cells. In: An, L., Zhao, T. (eds) Anion Exchange Membrane Fuel Cells. Lecture Notes in Energy, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-71371-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71371-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71370-0

  • Online ISBN: 978-3-319-71371-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics