Advertisement

On Auxiliary Entity Allocation Problem in Multi-layered Interdependent Critical Infrastructures

  • Joydeep BanerjeeEmail author
  • Arunabha Sen
  • Chenyang Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10242)

Abstract

Operation of critical infrastructures are highly interdependent on each other. Such dependencies causes failure in these infrastructures to cascade on an initial failure event. Owing to this vulnerability it is imperative to incorporate efficient strategies for their protection. Modifying dependencies by adding additional dependency implications using entities (termed as auxiliary entities) is shown to mitigate this issue to a certain extent. With this finding, in this article we introduce the Auxiliary Entity Allocation problem. The objective is to maximize protection in Power and Communication infrastructures using a budget in number of dependency modifications using the auxiliary entities. The problem is proved to be NP-complete in general case. We provide an optimal solution using Integer Linear program and a heuristic for a restricted case. The efficacy of heuristic with respect to the optimal is judged through experimentation using real world data sets with heuristic deviating \(6.75 \%\) from optimal on average.

Keywords

Interdependent network IIM model Auxiliary entity Dependency modification \(\mathcal {K}\) most vulnerable entities 

References

  1. 1.
    Andersson, G., Donalek, P., Farmer, R., Hatziargyriou, N., Kamwa, I., Kundur, P., Martins, N., Paserba, J., Pourbeik, P., Sanchez-Gasca, J., et al.: Causes of the 2003 major grid blackouts in north america and europe, and recommended means to improve system dynamic performance. IEEE Trans. Power Syst. 20(4), 1922–1928 (2005)CrossRefGoogle Scholar
  2. 2.
    Banerjee, J., Das, A., Zhou, C., Mazumder, A., Sen, A.: On the entity hardening problem in multi-layered interdependent networks. In: 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 648–653. IEEE (2015)Google Scholar
  3. 3.
    Bernstein, A., Bienstock, D., Hay, D., Uzunoglu, M., Zussman, G.: Power grid vulnerability to geographically correlated failures-analysis and control implications, (2012). arXiv preprint arXiv:1206.1099
  4. 4.
    Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464(7291), 1025–1028 (2010)CrossRefGoogle Scholar
  5. 5.
    Gao, J., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Networks formed from interdependent networks. Nat. Phys. 8(1), 40–48 (2011)CrossRefGoogle Scholar
  6. 6.
    Nguyen, D.T., Shen, Y., Thai, M.T.: Detecting critical nodes in interdependent power networks for vulnerability assessment (2013)Google Scholar
  7. 7.
    Parandehgheibi, M., Modiano, E.: Robustness of interdependent networks: The case of communication networks and the power grid, (2013). arXiv preprint arXiv:1304.0356
  8. 8.
    Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S., Setola, R.: Modelling interdependent infrastructures using interacting dynamical models. Int. J. Crit. Infrastruct. 4(1), 63–79 (2008)CrossRefGoogle Scholar
  9. 9.
    Sen, A., Mazumder, A., Banerjee, J., Das, A., Compton, R.: Identification of k most vulnerable nodes in multi-layered network using a new model of interdependency. In: 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 831–836. IEEE (2014)Google Scholar
  10. 10.
    Shao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Cascade of failures in coupled network systems with multiple support-dependence relations. Phys. Rev. E 83(3), 036116 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Tang, Y., Bu, G., Yi, J.: Analysis and lessons of the blackout in indian power grid on 30–31 july 2012. In: Zhongguo Dianji Gongcheng Xuebao(Proceedings of the Chinese Society of Electrical Engineering), vol. 32, pp. 167–174. Chinese Society for Electrical Engineering (2012)Google Scholar
  12. 12.
    Zhang, P., Peeta, S., Friesz, T.: Dynamic game theoretic model of multi-layer infrastructure networks. Netw. Spat. Econ. 5(2), 147–178 (2005)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computing, Informatics and Decision System EngineeringArizona State UniversityTempeUSA

Personalised recommendations