Advertisement

Reliable Key Distribution in Smart Micro-Grids

  • Heinrich StraussEmail author
  • Anne V. D. M. Kayem
  • Stephen D. Wolthusen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10242)

Abstract

Authentication in smart micro-grids facilitates circumventing power theft attacks. For economic reasons, we consider a smart micro-grid model in which several users (households) share smart meters. The caveat is that users belonging to neighbouring households can provoke misattribution attacks, resulting in unfair billing. Unfair billing can lead to user distrust in the reliability and dependability of the micro-grid and thus an unwillingness to participate in the scheme. The is undesirable since grid stability is impacted negatively by user withdrawals. In this paper, we make two contributions. First, we propose an attack model for power theft by misattribution. Second, we propose a key management scheme to circumvent such an attack. We show that the proposed scheme is secure against impersonation attacks and performance efficient.

Keywords

Key distribution Smart micro-grid Attack model 

References

  1. 1.
    Albadi, M.H., El-Saadany, E.: Demand response in electricity markets: an overview. In: IEEE Power Engineering Society General Meeting, vol. 2007, pp. 1–5 (2007)Google Scholar
  2. 2.
    Ambassa, P.L., Kayem, A.V.D.M., Wolthusen, S.D., Meinel, C.: Secure and reliable power consumption monitoring in untrustworthy micro-grids. In: Doss, R., Piramuthu, S., Zhou, W. (eds.) FNSS 2015. CCIS, vol. 523, pp. 166–180. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19210-9_12 CrossRefGoogle Scholar
  3. 3.
    Canetti, R., Chen, Y., Reyzin, L.: On the correlation intractability of obfuscated pseudorandom functions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 389–415. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49096-9_17 CrossRefGoogle Scholar
  4. 4.
    Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor networks. In: Proceedings of the 2003 Symposium on Security and Privacy, pp. 197–213. IEEE (2003)Google Scholar
  5. 5.
    Du, W., Deng, J., Han, Y.S., Varshney, P.K., Katz, J., Khalili, A.: A pairwise key predistribution scheme for wireless sensor networks. ACM Trans. Inf. Syst. Secur. 8(2), 228–258 (2005)CrossRefGoogle Scholar
  6. 6.
    Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, pp. 41–47. ACM (2002)Google Scholar
  7. 7.
    Fidge, C.J.: Timestamps in message-passing systems that preserve the partial ordering. Department of Computer Science, Australian National University (1987)Google Scholar
  8. 8.
    Kayem, A., Strauss, H., Wolthusen, S.D., Meinel, C.: Key Management for secure demand data communication in constrained micro-grids. In: Proceedings of the 30th International Conference on Advanced Information Networking and Applications Workshops. IEEE (2016)Google Scholar
  9. 9.
    Liu, D., Ning, P.: Multilevel \(\mu \)TESLA: broadcast authentication for distributed sensor networks. ACM Trans. Embed. Comput. Syst. (TECS) 3(4), 800–836 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Liu, D., Ning, P., Li, R.: Establishing pairwise keys in distributed sensor networks. ACM Trans. Inf. Syst. Secur. (TISSEC) 8(1), 41–77 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Heinrich Strauss
    • 1
    Email author
  • Anne V. D. M. Kayem
    • 1
  • Stephen D. Wolthusen
    • 2
  1. 1.Department of Computer ScienceUniversity of Cape TownRondeboschSouth Africa
  2. 2.NISLab, Faculty of Computer Science and Media TechnologyNTNU – Norwegian University of Science and TechnologyGjøvikNorway

Personalised recommendations