Selecting Privacy Solutions to Prioritise Control in Smart Metering Systems

  • Juan E. RubioEmail author
  • Cristina Alcaraz
  • Javier Lopez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10242)


The introduction of the Smart Grid brings with it several benefits to society, because its bi-directional communication allows both users and utilities to have better control over energy usage. However, it also has some privacy issues with respect to the privacy of the customers when analysing their consumption data. In this paper we review the main privacy-preserving techniques that have been proposed and compare their efficiency, to accurately select the most appropriate ones for undertaking control operations. Both privacy and performance are essential for the rapid adoption of Smart Grid technologies.


Smart Grid Data privacy Control Metering 



The second author receives funding from the Ramón y Cajal research programme financed by the Ministerio de Economía y Competitividad. In addition, this work also has been partially supported by the same ministry through the research project PERSIST (TIN2013-41739-R), by the Andalusian government through the project FISSICO (P11-TIC-07223) and by the European Commission through the H2020 project NECS (H2020-MSCA-ITN-2015- 675320).


  1. 1.
    Mohassel, R.R., Fung, A., Mohammadi, F., Raahemifar, K.: A survey on advanced metering infrastructure. Int. J. Electr. Power Energy Syst. 63, 473–484 (2014)CrossRefGoogle Scholar
  2. 2.
    Jawurek, M., Kerschbaum, F., Danezis, G.: Sok: Privacy technologies for smart grids-a survey of options. Microsoft Res., Cambridge, UK (2012)Google Scholar
  3. 3.
    Mahmud, R., Vallakati, R., Mukherjee, A., Ranganathan, P., Nejadpak, A.: A survey on smart grid metering infrastructures: threats and solutions. In: 2015 IEEE International Conference on Electro/Information Technology (EIT), pp. 386–391. IEEE (2015)Google Scholar
  4. 4.
    Souri, H., Dhraief, A., Tlili, S., Drira, K., Belghith, A.: Smart metering privacy-preserving techniques in a nutshell. Proc. Comput. Sci. 32, 1087–1094 (2014)CrossRefGoogle Scholar
  5. 5.
    Finster, S., Baumgart, I.: Privacy-aware smart metering: a survey. IEEE Commun. Surv. Tutorials 16(3), 1732–1745 (2014)CrossRefGoogle Scholar
  6. 6.
    Alcaraz, C., Lopez, J.: Analysis of requirements for critical control systems. Int. J. Crit. Infrastruct. Prot. (IJCIP) 5, 137–145 (2012)CrossRefGoogle Scholar
  7. 7.
    Brundtland Commission et al.: Our common future, Towards sustainable development. World Commission on Environment and Development (WCED). Geneva: United Nation (1987) Chap. 2Google Scholar
  8. 8.
    Al-Kuwaiti, M., Kyriakopoulos, N., Hussein, S.: A comparative analysis of network dependability, fault-tolerance, reliability, security, and survivability. IEEE Commun. Surv. Tutorials 11(2), 106–124 (2009)CrossRefGoogle Scholar
  9. 9.
    Bohli, J.M., Sorge, C., Ugus, O.: A privacy model for smart metering. In: 2010 IEEE International Conference on Communications Workshops (ICC), pp. 1–5. IEEE (2010)Google Scholar
  10. 10.
    Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., Irwin, D.: Private memoirs of a smart meter. In: Proceedings of the 2nd ACM Workshop On Embedded Sensing Systems For Energy-efficiency in Building, pp. 61–66. ACM (2010)Google Scholar
  11. 11.
    Jawurek, M., Johns, M., Kerschbaum, F.: Plug-in privacy for smart metering billing. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 192–210. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  12. 12.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). Google Scholar
  13. 13.
    LeMay, M., Gross, G., Gunter, C.A., Garg, S.: Unified architecture for large-scale attested metering. In: 2007 40th Annual Hawaii International Conference on System Sciences, HICSS 2007, pp. 115–115. IEEE (2007)Google Scholar
  14. 14.
    Kalogridis, G., Efthymiou, C., Denic, S.Z., Lewis, T.A., Cepeda, R.: Privacy for smart meters: Towards undetectable appliance load signatures. In: 2010 First IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 232–237. IEEE (2010)Google Scholar
  15. 15.
    Efthymiou, C., Kalogridis, G.: Smart grid privacy via anonymization of smart metering data. In: 2010 First IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 238–243. IEEE (2010)Google Scholar
  16. 16.
    Petrlic, R.: A privacy-preserving concept for smart grids. Sicherheit in vernetzten Systemen 18, B1–B14 (2010)Google Scholar
  17. 17.
    Rottondi, C., Verticale, G., Capone, A.: Privacy-preserving smart metering with multiple data consumers. Comput. Netw. 57(7), 1699–1713 (2013)CrossRefGoogle Scholar
  18. 18.
    Li, F., Luo, B., Liu, P.: Secure information aggregation for smart grids using homomorphic encryption. In: 2010 First IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 327–332 (2010)Google Scholar
  19. 19.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). CrossRefGoogle Scholar
  20. 20.
    Lin, H.-Y., Tzeng, W.-G., Shen, S.-T., Lin, B.-S.P.: A practical smart metering system supporting privacy preserving billing and load monitoring. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 544–560. Springer, Heidelberg (2012). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Juan E. Rubio
    • 1
    Email author
  • Cristina Alcaraz
    • 1
  • Javier Lopez
    • 1
  1. 1.Department of Computer ScienceUniversity of MalagaMalagaSpain

Personalised recommendations