Power Auctioning in Resource Constrained Micro-grids: Cases of Cheating

  • Anesu M. C. MarufuEmail author
  • Anne V. D. M. Kayem
  • Stephen D. Wolthusen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10242)


In this paper, we consider the Continuous Double Auction (CDA) scheme as a comprehensive power resource allocation approach on micro-grids. Users of CDA schemes are typically self-interested and so work to maximize self-profit. Meanwhile, security in CDAs has received limited attention, with little to no theoretical or experimental evidence demonstrating how an adversary cheats to gain excess energy or derive economic benefits. We identify two forms of cheating realised by changing the trading agent (TA) strategy of some of the agents in a homogeneous CDA scheme. In one case an adversary gains control and degrades other trading agents’ strategies to gain more surplus. While in the other, K colluding trading agents employ an automated coordinated approach to changing their TA strategies to maximize surplus power gains. We propose an exception handling mechanism that makes use of allocative efficiency and message overheads to detect and mitigate cheating forms.


Micro-grid Power auctioning Continuous Double Auctioning Cheating attacks Agent strategy 


  1. 1.
    Haque, A., Alhashmi, S.M., Parthiban, R.: A survey of economic models in grid computing. Future Gener. Comput. Syst. 27(8), 1056–1069 (2011)CrossRefGoogle Scholar
  2. 2.
    Marufu, A.M.C., Kayem, A.V.D.M., Wolthusen, S.D.: A distributed continuous double auction framework for resource constrained microgrids. In: Rome, E., Theocharidou, M., Wolthusen, S. (eds.) CRITIS 2015. LNCS, vol. 9578, pp. 183–196. Springer, Cham (2016). Google Scholar
  3. 3.
    Marufu, A.M.C., Kayem, A.V.D.M., Wothulsen, S.D.: Fault-tolerant distributed continuous double auctioning on computationally constrained microgrids. In: Proceedings of the 2nd International Conference on Information Systems Security and Privacy, ICISSP 2016, pp. 448–456. SCITEPRESS (2016)Google Scholar
  4. 4.
    Stańczak, J., Radziszewska, W., Nahorski, Z.: Dynamic pricing and balancing mechanism for a microgrid electricity market. In: Filev, D., Jabłkowski, J., Kacprzyk, J., Krawczak, M., Popchev, I., Rutkowski, L., Sgurev, V., Sotirova, E., Szynkarczyk, P., Zadrozny, S. (eds.) Intelligent Systems’2014. AISC, vol. 323, pp. 793–806. Springer, Cham (2015). Google Scholar
  5. 5.
    De Luca, M., Cliff, D.: Human-agent auction interactions: adaptive-aggressive agents dominate. In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol. 22, p. 178. Citeseer (2011)Google Scholar
  6. 6.
    Tesauro, G., Bredin, J.L.: Strategic sequential bidding in auctions using dynamic programming. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 2, pp. 591–598. ACM (2002)Google Scholar
  7. 7.
    Vytelingum, P.: The structure and behaviour of the Continuous Double Auction. Ph.D. thesis, University of Southampton (2006)Google Scholar
  8. 8.
    Vytelingum, P., Cliff, D., Jennings, N.R.: Strategic bidding in continuous double auctions. Artif. Intell. 172(14), 1700–1729 (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Vach, D., Maršńl, A.M.A.: Comparison of double auction bidding strategies for automated trading agents (2015)Google Scholar
  10. 10.
    Yokoo, M., Sakurai, Y., Matsubara, S.: The effect of false-name bids in combinatorial auctions: new fraud in Internet auctions. Games Econ. Behav. 46(1), 174–188 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Porter, R., Shoham, Y.: On cheating in sealed-bid auctions. Decis. Support Syst. 39(1), 41–54 (2005)CrossRefGoogle Scholar
  12. 12.
    Chakraborty, I., Kosmopoulou, G.: Auctions with shill bidding. Econ. Theor. 24(2), 271–287 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Trevathan, J., Read, W.: Detecting shill bidding in online English auctions. In: Handbook of Research on Social and Organizational Liabilities in Information Security, p. 446. Information Science Reference, Hershey (2008)Google Scholar
  14. 14.
    Wang, C., Leung, H.: Anonymity and security in continuous double auctions for internet retails market. In: Proceedings of the 37th Annual Hawaii International Conference on System Sciences, 10 pp. IEEE (2004)Google Scholar
  15. 15.
    Trevathan, J., Ghodosi, H., Read, W.: An anonymous and secure continuous double auction scheme. In: Proceedings of the 39th Annual Hawaii International Conference on System Sciences, HICSS 2006, vol. 6, p. 125b. IEEE (2006)Google Scholar
  16. 16.
    Ma, H., Leung, H.-F.: An adaptive attitude bidding strategy for agents in continuous double auctions. Electron. Commer. Res. Appl. 6(4), 383–398 (2008)CrossRefGoogle Scholar
  17. 17.
    Chaudhuri, P., Edward, T.: An algorithm for k-mutual exclusion in decentralized systems. Comput. Commun. 31(14), 3223–3235 (2008)CrossRefGoogle Scholar
  18. 18.
    Parsons, S., Klein, M.: Towards robust multi-agent systems: handling communication exceptions in double auctions. In: Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 3, pp. 1482–1483. IEEE Computer Society (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anesu M. C. Marufu
    • 1
    Email author
  • Anne V. D. M. Kayem
    • 1
  • Stephen D. Wolthusen
    • 2
    • 3
  1. 1.Department of Computer ScienceUniversity of Cape TownCape TownSouth Africa
  2. 2.Department of Information Security and Communication TechnologyNorwegian University of Science and TechnologyGjøvikNorway
  3. 3.School of Mathematics and Information SecurityRoyal Holloway, University of LondonEghamUK

Personalised recommendations