Skip to main content

Genetic Connectivity in Tropical and Temperate Australian Seagrass Species

  • Chapter
  • First Online:
Seagrasses of Australia

Abstract

Connectivity among populations influences resilience, genetic diversity , adaptation and speciation, so understanding this process is fundamental for conservation and management . This chapter summarises the main mechanisms of gene flow within and among seagrass meadows , and what we know about the spatial patterns of gene flow around Australia’s coastline. Today a significant body of research on the demographic and genetic connectivity of Australian seagrass meadows has developed. Most studies have focused on the genera Posidonia, Zostera, Heterozostera and Thalassia, in tropical and temperate systems across a range of habitats. These studies have shown overwhelmingly, that sexual reproduction is important for meadow persistence, as in most cases Australian seagrass meadows are genotypically diverse, with moderate to high levels of genotypic diversity. This high diversity could be generated through demographic connectivity, recruitment of individuals sourced from within a meadow, or from dispersal between meadows. Attempts to understand the relative significance of these processes are limited, highlighting a major gap in our understanding. Genetic structure is apparent across a range of spatial scales, from m’s to 100’s to 1000’s km. At local and regional scales, particularly in confined systems such as estuaries and bays, it is not necessarily the dominant oceanographic currents influencing patterns of genetic connectivity, but local eddies, winds and tides. Over larger spatial scales , isolation by distance is consistently significant, with unique genetic clusters spreading over 100s of kilometres. This indicates that regional structure occurs at the limits of long distance dispersal for the species and this is particularly evident where meadows are highly fragmented. The number of genetic studies on Australian seagrasses has increased dramatically recently; however, there are still many opportunities to improve our understanding through focusing on species with different dispersal potentials, more detailed sampling across a range of spatial and temporal scales and combining ecological and modelling approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note Thomson et al. (2015) define these as viviparous propagules, but this term is incorrect. Viviparous propagules are sexually produced propagules that develop on the mother plant. We use the term asexually or clonally derived propagules in this case.

References

  • Ackerman JD (1995) Convergence of filiform pollen morphologies in seagrasses—functional mechanisms. Evol Ecol 9:139–153

    Article  Google Scholar 

  • Ackerman JD (1997a) Submarine pollination in the marine angiosperm Zostera marina (Zosteraceae). 1. The influence of floral morphology on fluid flow. Am J Bot 84:1099–1109

    Article  PubMed  CAS  Google Scholar 

  • Ackerman JD (1997b) Submarine pollination in the marine angiosperm Zostera marina (Zosteraceae). 2. Pollen transport in flow fields and capture by stigmas. Am J Bot 84:1110–1119

    Article  PubMed  CAS  Google Scholar 

  • Ackerman JD (2006) Sexual reproduction of seagrasses: pollination in the marine context. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht

    Google Scholar 

  • Ailstock SM, Shafer DJ, Magoun DA (2010) Protocols for use of Potamogeton perfoliatus and Ruppia maritima seeds in large-scale restoration. Restor Ecol 18:560–573

    Article  Google Scholar 

  • Alberto F, Massa S, Manent P, Diaz-Almela E, Arnaud-Haond S, Duarte CM, Serrao EA (2008) Genetic differentiation and secondary contact zone in the seagrass Cymodocea nodosa across the Mediterranean-Atlantic transition region. J Biogeogr 35:1279–1294

    Article  Google Scholar 

  • Arnaud-Haond S, Alberto F, Teixeira S, Procaccini G, Serrao EA, Duarte CM (2005) Assessing genetic diversity in clonal organisms: low diversity or low resolution? Combining power and cost efficiency in selecting markers. J Hered 96:434–440

    Article  PubMed  CAS  Google Scholar 

  • Arnaud-Haond S, Duarte CM, Diaz-Almela E, Marba N, Sintes T, Serrao EA (2012) Implications of extreme life span in clonal organisms: millenary clones in meadows of the threatened seagrass Posidonia oceanica. Plos One 7:e30454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arriesgado DM, Kurokochi H, Lian C, Nakajima Y, Matsuki Y, Nagai S, Yasuike M, Nakamura Y, Uy WH, Fortes MD, Campos WL, Kb Nadaoka (2014a) Isolation and characterization of novel microsatellite markers for Cymodocea serrulata (Cymodoceaceae), a seagrass distributed widely in the Indo-Pacific region. Plant Species Biol 30:297–299

    Article  Google Scholar 

  • Arriesgado DM, Nakajima Y, Matsuki Y, Lian C, Nagai S, Yasuike M, Nakamura Y, Fortes MD, Uy WH, Campos WL, Nakaoka M, Nadaoka K (2014b) Development of novel microsatellite markers for Cymodocea rotundata Ehrenberg (Cymodoceaceae), a pioneer seagrass species widely distributed in the Indo-Pacific. Conserv Genet Resour 6:135–238

    Article  Google Scholar 

  • Balestri E, Vallerini F, Lardicci C (2011) Storm-generated fragments of the seagrass Posidonia oceanica from beach wrack—a potential source of transplants for restoration. Biol Cons 144:1644–1654

    Article  Google Scholar 

  • Ballesteros E, Cebrian E, Garcia-Rubies A, Alcoverro T, Romero J, Font X (2005) Pseudovivipary, a new form of asexual reproduction in the seagrass Posidonia oceanica. Bot Mar 48:175–177

    Article  Google Scholar 

  • Bricker E, Waycott M, Calladine A, Zieman J (2011) High connectivity across environmental gradients and implications for phenotypic plasticity in a marine plant. Mar Ecol Prog Ser 423:57–67

    Article  Google Scholar 

  • Cambridge ML, Kuo J (1979) Two new species of seagrasses from Australia, Posidonia sinuosa and P. angustifolia (Posidoniaceae). Aquat Bot 6:307–328

    Article  Google Scholar 

  • Campbell ML (2003) Recruitment and colonisation of vegetative fragments of Posidonia australis and Posidonia coriacea. Aquat Bot 76:175–184

    Article  Google Scholar 

  • Campey M, Kendrick GA, Walker DI (2002) Interannual and small scale spatial variability in sexual reproduction of the seagrass Posidonia coriacea and Heterozostera tasmanica, Southwestern Australia. Aquat Bot 74:287–297

    Article  Google Scholar 

  • Charalambidou I, Santamaria L, Langevoord O (2003) Effect of ingestion by five avian dispersers on the retention time, retrieval and germination of Ruppia maritima seeds. Funct Ecol 17:747–753

    Article  Google Scholar 

  • Conacher CA, Poiner IR, O’Donohue M (1994) Morphology, flowering and seed production of Zostera capricorni Aschers in subtropical Australia. Aquat Bot 49:33–46

    Article  Google Scholar 

  • Corander J, Majander KK, Cheng L, Merila J (2013) High degree of cryptic population differentiation in the Baltic Sea herring Clupea harengus. Mol Ecol 22:2931–2940

    Article  PubMed  CAS  Google Scholar 

  • Cox PA, Knox RB (1989) Two-dimensional pollination in hydrophilous plants - convergent evolution in the genera Halodule (Cymodoceaceae), Halophila (Hydrocharitaceae), Ruppia (Ruppiaceae), and Lepilaena (Zannichelliaceae). Am J Bot 76:164–175

    Article  Google Scholar 

  • Cox PA, Tomlinson PB (1988) Pollination ecology of a seagrass, Thalassia testudinum (Hydrocharitaceae), in St Croix. Am J Bot 75:958–965

    Article  Google Scholar 

  • Cox PA, Laushman RH, Ruckelshaus MH (1992a) Surface and submarine pollination in the seagrass Zostera marina L. Bot J Linn Soc 109:281–291

    Article  Google Scholar 

  • Cox PA, Tomlinson PB, Nieznanski K (1992b) Hydrophilous pollination and reproductive morphology in the seagrass Phyllospadix scouleri (Zosteraceae). Plant Syst Evol 180:65–75

    Article  Google Scholar 

  • Coyer JA, Hoarau G, Kuo J, Tronholm A, Veldsink J, Olsen JL (2013) Phylogeny and temporal divergence of the seagrass family Zosteraceae using one nuclear and three chloroplast loci. Syst Biodivers 11:271–284

    Article  Google Scholar 

  • den Hartog C (1970) Sea-grasses of the world. North Holland Publishing Company, Amsterdam

    Google Scholar 

  • Di Carlo G, Badalamenti F, Jensen AC, Koch EW, Riggio S (2005) Colonisation process of vegetative fragments of Posidonia oceanica (L.) Delile on rubble mounds. Mar Biol 147:1261–1270

    Article  Google Scholar 

  • Ducker SC, Pettitt JM, Knox RB (1978) Biology of Australian seagrasses: pollen development and submarine pollination in Amphibolis antarctica and Thalassodendron ciliatum (Cymodoceaceae). Aust J Bot 26:265–285

    Article  Google Scholar 

  • Ellstrand N (2014) Is gene flow the most important evolutionary force in plants. Am J Bot 101:737–753

    Article  PubMed  Google Scholar 

  • Endler JA (1977) Geographic variation, speciation and clines. Princeton Press, New Jersey

    Google Scholar 

  • Erftemeijer PLA, van Beek JKL, Ochieng CA, Jager Z, Los HJ (2008) Eelgrass seed dispersal via floating generative shoots in the Dutch Wadden Sea: a model approach. Mar Ecol Prog Ser 358:115–124

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Evans SM, Sinclair EA, Poore AGB, Steinberg PD, Kendrick GA, Verges A (2014) Genetic diversity in threatened Posidonia australis seagrass meadows. Conserv Genet 15:717–728

    Article  Google Scholar 

  • Fernandez M, Goszczynski D, Liron J, Villegas-Castagnasso E, Carino M, Ripoli M (2013) Comparison of the effectiveness of microsatellites and SNP panels for genetic identification, traceability and assessment of parentage in an inbred Angus herd. Genet Mol Biol 36:185–194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Figuerola J, Green AJ, Santamaria L (2002) Comparative dispersal effectiveness of wigeongrass seeds by waterfowl wintering in south-west Spain: quantitative and qualitative aspects. J Ecol 90:989–1001

    Article  Google Scholar 

  • Fischer M, Rellstab C, Leuzinger M, Roumet M, Gugerli F, Shimizu K, Holderegger R, Widmer A (2017) Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genom 18:69

    Article  Google Scholar 

  • Gagnaire PA, Broquet T, Aurelle D, Viard F, Souissi A, Bonhomme F, Arnaud-Haond S, Bierne N (2015) Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol Appl 8:769–786

    Article  PubMed  PubMed Central  Google Scholar 

  • Gärke C, Ytournel F, Bed’hom B, Gut I, Lathrop M, Weigend S (2012) Comparison of SNPs and microsatellites for assessing the genetic structure of chicken populations. Anim Genet 43:419–428

    Article  PubMed  Google Scholar 

  • Grech A, Wolter J, Coles R, McKenzie L, Rasheed M, Thomas C, Waycott M, Hanert E (2016) Spatial patterns of seagrass dispersal and settlement. Divers Distrib 22:1150–1162

    Article  Google Scholar 

  • Hardy OJ (2009) How fat is the tail? Heredity 103:437–438

    Article  PubMed  Google Scholar 

  • Harwell MC, Orth RJ (2002) Long-distance dispersal potential in a marine macrophyte. Ecology 83:3319–3330

    Article  Google Scholar 

  • Hernawan U (2016) Gene flow and genetic structure of the seagrass Thalassia hemprichii in the Indo-Australian Archipelago. Ph.D., Edith Cowan University, Joondalup

    Google Scholar 

  • Hernawan U, van Dijk K, Kendrick G, Feng M, Biffin E, Lavery P, McMahon K (2017) Historical processes and contemporary ocean currents drive genetic structure in the seagrass Thalassia hemprichii in the Indo-Australian Archipelago. Mol Ecol 26:1008–1021

    Article  PubMed  CAS  Google Scholar 

  • Holsinger KE, Weir BS (2009) Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet 10:639–650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inglis GJ, Lincoln Smith MP (1988) Synchronous flowering of estuarine seagrass meadows. Aquat Bot 60:37–48

    Article  Google Scholar 

  • Isada AP, Bermejo MG (2009) Review of dispersal means of a newly reported Ruppia maritima L. (Ruppiaceae) population in north central Cuba. Mesoamericana 13:28–36

    Google Scholar 

  • Jacobs SWL, Brock MA (2011) Ruppiaceae in Flora of Australia. Alismatales to Arales, vol 39. ABRS/CSIRO, Melbourne

    Google Scholar 

  • Jacobs SWL, McColl KA (2011) Zannichelliaceae. Flora of Australia Alismatales to Arales, Book 39. ABRS/CSIRO, Melbourne, Australia

    Google Scholar 

  • Jenkins G, Keough M, Ball D, Cook P, Ferguson A, Gay J, Hirst A, Lee R, Longmore A, Macreadie P, Nayar S, Sherman C, Smith T, Ross J, York P (2015) Seagrass Resilience in Port Phillip Bay. Final Report to the Seagrass and Reefs Program for Port Phillip Bay. University of Melbourne, Melbourne

    Google Scholar 

  • Kallstrom B, Nyqvist A, Aberg P, Bodin M, Andre C (2008) Seed rafting as a dispersal strategy for eelgrass (Zostera marina). Aquat Bot 88:148–153

    Article  Google Scholar 

  • Kendrick GA, Waycott M, Carruthers TJB, Cambridge ML, Hovey R, Krauss SL, Lavery PS, Les DH, Lowe RJ, Vidal OMI, Ooi JLS, Orth RJ, Rivers DO, Ruiz-Montoya L, Sinclair EA, Statton J, van Dijk JK, Verduin JJ (2012) The central role of dispersal in the maintenance and persistence of seagrass populations. Bioscience 62:56–65

    Article  Google Scholar 

  • Kendrick G, Orth R, Statton J, Hovey R, Ruiz Montoya L, Lowe R, Krauss S, Sinclair EA (2017) Demographic and genetic connectivity: the role and consequences of reproduction, dispersal and recruitment in seagrasses. Biol Rev 92:921–938

    Article  PubMed  Google Scholar 

  • Kilminster K, McMahon K, Waycott M, Kendrick GA, Scanes P, McKenzie L, O’Brien KR, Lyons M, Ferguson A, Maxwell P, Glasby T, Udy J (2015) Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci Total Environ 534:97–109

    Article  PubMed  CAS  Google Scholar 

  • Kinlan B, Gaines S (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007–2020

    Article  Google Scholar 

  • Kinlan BP, Gaines SD, Lester SE (2005) Propagule dispersal and the scales of marine community process. Divers Distrib 11:139–148

    Article  Google Scholar 

  • Kuo J, Kirkman H (1992) Fruits, seeds and germination in the seagrass Halophila ovalis (Hydrocharitaceae). Bot Mar 35:197–204

    Article  Google Scholar 

  • Kuo J, McComb AJ (1989) Seagrass taxonomy, structure and development. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of Seagrasses A treatise on the biology of seagrasses with special reference to the Australian region. Elsevier, Amsterdam

    Google Scholar 

  • Kuo J, Cook IH, Kirkman H (1987) Observations of propagating shoots in the seagrass Amphibolis C. Agardh (Cymodoceaceae). Aquat Bot 27:291–293

    Article  Google Scholar 

  • Kuo J, Coles RG, Long WJL, Mellors JE (1991) Fruits and seeds of Thalassia hemprichii (Hydrocharitaceae) from Queensland, Australia. Aquat Bot 40:165–173

    Article  Google Scholar 

  • Lacap CDA, Vermaat JE, Rollon RN, Nacorda HM (2002) Propagule dispersal of the SE Asian seagrasses Enhalus acoroides and Thalassia hemprichii. Mar Ecol Prog Ser 235:75–80

    Article  Google Scholar 

  • Larson EL, White TA, Ross CL, Harrison RG (2014) Gene flow and the maintenance of species boundaries. Mol Ecol 23:1668–1678

    Article  PubMed  Google Scholar 

  • Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in Alismatidae, II: evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot 22:443–463

    Article  Google Scholar 

  • Lipkin Y (1975) Halophila stipulacea in Cyprus and Rhodes 1967–1970. Aquat Bot 1:309–320

    Article  Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051

    Article  PubMed  Google Scholar 

  • Lowe AJ, Harris SA, Ashton SA (2004) Ecological genetics: design, analysis and application. Blackwells, New York

    Google Scholar 

  • Macreadie PI, York PH, Sherman CDH (2014) Resilience of Zostera muelleri seagrass to small-scale disturbances: the relative importance of asexual versus sexual recovery. Ecol Evol 4:450–461

    Article  PubMed  PubMed Central  Google Scholar 

  • Mata MM, Wijffels SE, Church JA, Tomczak M (2006) Eddy shedding and energy conversions in the East Australian Current. J Geophy Res-Oceans 111

    Google Scholar 

  • Matsuki Y, Takahashi A, Nakajima Y, Lian CL, Fortes MD, Uy WH, Campos WL, Nakaoka M, Nadaoka K (2013) Development of microsatellite markers in a tropical seagrass Syringodium isoetifolium (Cymodoceaceae). Conserv Genet Resour 5:715–717

    Article  Google Scholar 

  • McComb AJ, Cambridge ML, Kirkman H, Kuo J (1981) The biology of Australian seagrasses. In: Pate JS, McComb AJ (eds) The biology of Australian plants. University of Western Australia Press, Nedlands

    Google Scholar 

  • McConchie CA, Knox RB (1989) Pollen-stigma interaction in the seagrass Posidonia australis. Ann Bot 63:235–248

    Article  Google Scholar 

  • McMahon K (2005) Recovery of subtropical seagrasses from natural disturbance. Ph.D., University of Queensland, Brisbane

    Google Scholar 

  • McMahon K, van Dijk K-J, Ruiz-Montoya L, Kendrick GA, Krauss SL, Waycott M, Verduin J, Lowe R, Statton J, Brown E, Duarte C (2014) The movement ecology of seagrasses. Proc R Soc B-Biol Sci 281:20140878

    Article  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: F-ST and related measures. Mol Ecol Resour 11:5–18

    Article  PubMed  Google Scholar 

  • Nakajima Y, Matsuki Y, Lian CL, Fortes MD, Uy WH, Campos WL, Nakaoka M, Nadaoka K (2012) Development of novel microsatellite markers in a tropical seagrass, Enhalus acoroides. Conserv Genet Resour 4:515–517

    Article  Google Scholar 

  • Nathan R (2006) Long-distance dispersal of plants. Science 313:786–788

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VX, Detcharoen M, Tuntiprapas P, Soe-Htun U, Sidik JB, Harah MZ, Prathep A, Papenbrock J (2014) Genetic species identification and population structure of Halophila (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean. BMC Evol Biol 14:1–18

    Article  CAS  Google Scholar 

  • Oetjen K, Ferber S, Dankert I, Reusch TBH (2010) New evidence for habitat-specific selection in Wadden Sea Zostera marina populations revealed by genome scanning using SNP and microsatellite markers. Mar Biol 157:81–89

    Article  CAS  Google Scholar 

  • Ogden R, Gharbi K, Mugue N, Martinsohn J, Senn H, Davey JW, Pourkazemi M, McEwing R, Eland C, Vidotto M, Sergeev A, Congiu L (2013) Sturgeon conservation genomics: SNP discovery and validation using RAD sequencing. Mol Ecol 22:3112–3123

    Article  PubMed  CAS  Google Scholar 

  • Orth RJ, Luckenbach M, Moore KA (1994) Seed dispersal in a marine macrophyte—implications for colonization and restoration. Ecology 75:1927–1939

    Article  Google Scholar 

  • Orth RJ, Harwell MC, Inglis GJ (2006) Ecology of seagrass seeds and dispersal strategies. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht

    Google Scholar 

  • Pettitt JM (1984) Aspects of flowering and pollination in marine angiosperms. Oceanogr Mar Biol Annu Rev 22:315–342

    Google Scholar 

  • Porter JL, Kingsford RT, Brock MA (2007) Seed banks in arid wetlands with contrasting flooding, salinity and turbidity regimes. Plant Ecol 188:215–234

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Remizowa MV, Sokoloff DD, Calvo S, Tomasello A, Rudall PJ (2012) Flowers and inflorescences of the seagrass Posidonia (Posidoniaceae, Alismatales). Am J Bot 99:1592–1608

    Article  PubMed  Google Scholar 

  • Reusch TBH (2001) New markers—old questions: population genetics of seagrasses. Mar Ecol Prog Ser 211:261–274

    Article  CAS  Google Scholar 

  • Reusch TBH (2002) Microsatellites reveal high population connectivity in eelgrass (Zostera marina) in two contrasting coastal areas. Limnol Oceanogr 47:78–85

    Article  Google Scholar 

  • Rollon RN, Vermaat JE, Nacorda HME (2003) Sexual reproduction in SE Asian seagrasses: the absence of a seed bank in Thalassia hemprichii. Aquat Bot 75:181–185

    Article  Google Scholar 

  • Ruiz-Montoya L, Lowe RJ, Van Niel KP, Kendrick GA (2012) The role of hydrodynamics on seed dispersal in seagrasses. Limnol Oceanogr 57:1257–1265

    Article  Google Scholar 

  • Ruiz-Montoya RJ, Lowe RJ, Kendrick GA (2015) Contemporary connectivity is sustained by wind- and current-driven seed dispersal among seagrass meadows. Mov Ecol 3:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Serra IA, Innocenti AM, Di Maida G, Calvo S, Migliaccio M, Zambianchi E, Pizzigalli C, Arnaud-Haond S, Duarte CM, Serrao EA, Procaccini G (2010) Genetic structure in the Mediterranean seagrass Posidonia oceanica: disentangling past vicariance events from contemporary patterns of gene flow. Mol Ecol 19:557–568

    Article  PubMed  CAS  Google Scholar 

  • Serrano O, Davis G, Lavery P, Duarte C, Martinez-Cortizas A, Mateo M, Masqué P, Arias-Ortiz A, Rozaimi M, Kendrick G (2016) Reconstruction of centennial-scale fluxes of chemical elements in the Australian coastal environment using seagrass archives. Sci Total Environ 541:883–894

    Article  PubMed  CAS  Google Scholar 

  • Sherman CDH, Stanley AM, Keough MJ, Gardner MG, Macreadie PI (2012) Development of twenty-three novel microsatellite markers for the seagrass, Zostera muelleri from Australia. Conserv Genet Resour 4:689–693

    Article  Google Scholar 

  • Sherman CDH, York P, Smith T, Macreadie P (2016) Fine-scale patterns of genetic variation in a widespread clonal seagrass species. Mar Biol 163:82

    Article  CAS  Google Scholar 

  • Short F, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol 350:3–20

    Article  Google Scholar 

  • Sinclair EA, Anthony J, Coupland GT, Waycott M, Barrett MD, Barrett RL, Cambridge ML, Wallace MJ, Dixon KW, Krauss SL, Kendrick GA (2009) Characterisation of polymorphic microsatellite markers in the widespread Australian seagrass, Posidonia australis Hook. f. (Posidoniaceae), with cross-amplification in the sympatric P. sinuosa. Conserv Genet Resour 1:273–276

    Article  Google Scholar 

  • Sinclair EA, Gecan I, Krauss SL, Kendrick GA (2014a) Against the odds: complete outcrossing in a monoecious clonal seagrass Posidonia australis (Posidoniaceae). Ann Bot 113:1185–1196

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinclair EA, Krauss SL, Anthony J, Hovey R, Kendrick GA (2014b) The interaction of environment and genetic diversity within meadows of the seagrass Posidonia australis (Posidoniaceae). Mar Ecol Prog Ser 506:87–98

    Article  Google Scholar 

  • Sinclair EA, Statton J, Hovey R, Anthony J, Dixon K, Kendrick G (2016a) Reproduction at the extremes: pseudovivipary and genetic mosaicism in Posidonia australis Hooker (Posidoniaceae). Ann Bot 117:237–247

    PubMed  Google Scholar 

  • Sinclair EA, Anthony JM, Greer D, Ruiz-Montoya L, Evans SE, Krauss SL, Kendrick GA (2016b) Genetic signatures of a Bassian glacial refugia and contemporary connectivity in a marine foundation species. J Biogeogr 43:2209–2222

    Article  Google Scholar 

  • Smith NM, Walker DI (2002) Canopy structure and pollination biology of the seagrasses Posidonia australis and P. sinuosa (Posidoneaceae). Aquat Bot 74:57–70

    Article  Google Scholar 

  • Smith TM, York PH, Stanley AM, Macreadie PI, Keough MJ, Ross DJ, Sherman CDH (2013) Microsatellite primer development for the seagrass Zostera nigricaulis (Zosteraceae). Conserv Genet Resour 5:607–610

    Article  Google Scholar 

  • Smith TM, York PH, Broitman BR, Thiel M, Hays GC, van Sebille E, Putman NF, Macreadie PI, Sherman CDH (2018) Rare long distance dispersal event leads to the world’s largest marine clone. Global Ecol Biogeogr. https://doi.org/10.1111/geb.1271

  • Stafford-Bell RE, Chariton AA, Robinson RW (2015) Prolonged buoyancy and viability of Zostera muelleri Irmisch ex Asch vegetative fragments indicate a strong dispersal potential. J Exp Mar Biol Ecol 464:52–57

    Article  Google Scholar 

  • Steedman RK, Craig PD (1983) Wind-driven circulation of Cockburn sound. Aust J Mar Freshw Res 34:187–212

    Article  Google Scholar 

  • Sumoski SE, Orth RJ (2012) Biotic dispersal in eelgrass Zostera marina. Mar Ecol Prog Ser 471:1–10

    Article  Google Scholar 

  • Thomson ACG, York PH, Smith TM, Sherman CDH, Booth DJ, Keough MJ, Ross DJ, Macreadie PI (2015) Seagrass viviparous propagules as a potential long-distance dispersal mechanism. Estuaries Coasts 38:927–940

    Article  Google Scholar 

  • Tol SJ, Jarvis JC, Coles RC, York PY, Congdon BC (2015) Tropical seagrass seed dispersal by marinemega-herbivores. Poster presentation from Australian Marine Sciences Association. Deakin University, Geelong

    Google Scholar 

  • Triest L, Sierens T (2013) Is the genetic structure of Mediterranean Ruppia shaped by bird-mediated dispersal or sea currents? Aquat Bot 104:176–184

    Article  Google Scholar 

  • Tulipani DC, Lipcius RN (2014) Evidence of eelgrass (Zostera marina) seed dispersal by northern diamondback terrapin (Malaclemys terrapin terrapin) in Lower Chesapeake Bay. Plos One 9:e103346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Unsworth RKF, Collier CJ, Waycott M, McKenzie LJ, Cullen-Unsworth LC (2015) A framework for the resilience of seagrass ecosystems. Mar Pollut Bull 100:34–46

    Article  PubMed  CAS  Google Scholar 

  • van Dijk JK, van Tussenbroek BI, Jimenez-Duran K, Judith Marquez-Guzman G, Ouborg J (2009) High levels of gene flow and low population genetic structure related to high dispersal potential of a tropical marine angiosperm. Mar Ecol Prog Ser 390:67–77

    Article  Google Scholar 

  • van Dijk K-J, Mellors J, Waycott M (2014) Development of multiplex microsatellite PCR panels for the seagrass Thalassia hemprichii (Hydrocharitaceae). Appl Plant Sci 2:1400078

    Article  Google Scholar 

  • Van Inghelandt D, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299

    Article  PubMed  PubMed Central  Google Scholar 

  • van Tussenbroek BI, Monroy-Velazquez LV, Solis-Weiss V (2012) Meso-fauna foraging on seagrass pollen may serve in marine zoophilous pollination. Mar Ecol Prog Ser 469:1–6

    Article  Google Scholar 

  • van Tussenbroek B, Villamil N, Marques-Guzman J, Wong R, Monroy-Velazquez L, Solis-Weiss V (2016) Experimental evidence of pollination in marine flowers by invertebrate fauna. Nat Commun 7:12980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verduin JJ, Walker DI, Kuo J (1996) In situ submarine pollination in the seagrass Amphibolis antarctica: research notes. Mar Ecol Prog Ser 133:307–309

    Article  Google Scholar 

  • Verduin JJ, Backhaus JO, Walker DI (2002) Estimates of pollen dispersal and capture within Amphibolis antarctica (Labill.) Sonder and Aschers. Ex Aschers. Meadows. Bull Mar Sci 71:1269–1277

    Google Scholar 

  • Verity R, Nichols R (2014) What is genetic differentiation, and how should we measure it—GST, D, neither or both? Mol Ecol 23:4216–4225

    Article  PubMed  Google Scholar 

  • Wainwright BJ, Arlyza IS, Karl SA (2013a) Isolation and characterization of eighteen polymorphic microsatellite loci for the topical seagrass, Syringodium isoetifolium. Conserv Genet Resour 5:943–945

    Article  Google Scholar 

  • Wainwright BJ, Arlyza IS, Karl SA (2013b) Isolation and characterization of twenty-four polymorphic microsatellite loci for the tropical seagrass, Thalassia hemprichii. Conserv Genet Resour 5:939–941

    Article  Google Scholar 

  • Waples R, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439

    Article  PubMed  CAS  Google Scholar 

  • Waycott M, Sampson JF (1997) The mating system of an hydrophilous angiosperm Posidonia australis (Posidoniaceae). Am J Bot 84:621–625

    Article  PubMed  CAS  Google Scholar 

  • Waycott M, McMahon KM, Mellors JE, Calladine A, Kleine D (2004) A guide to tropical seagrasses of the Indo-West Pacific. James Cook University, Townsville, p 72. ISBN: 10 0864437269

    Google Scholar 

  • Waycott M, McMahon K, Lavery P (2014) A guide to southern temperate seagrasses. CSIRO Publishing, Melbourne

    Google Scholar 

  • West RJ (1983) The seagrasses of New South Wales estuaries and embayments. Wetlands 3:34–44

    Google Scholar 

  • White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, Toonen RJ (2010) Ocean currents help explain population genetic structure. Proc R Soc B-Biol Sci 277:1685–1694

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  PubMed  CAS  Google Scholar 

  • Wu K, Chen C-N, Soong K (2016) Long distance dispersal potential of two seagrasses Thalassia hemprichii and Halophila ovalis. PLoS ONE 11:e0156585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu NN, Yu S, Zhang JG, Tsang PKE, Chen XY (2010) Microsatellite primers for Halophila ovalis and cross-amplification in H. minor (Hydrocharitaceae). Am J Bot 97:E56–E57

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn McMahon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McMahon, K. et al. (2018). Genetic Connectivity in Tropical and Temperate Australian Seagrass Species. In: Larkum, A., Kendrick, G., Ralph, P. (eds) Seagrasses of Australia. Springer, Cham. https://doi.org/10.1007/978-3-319-71354-0_6

Download citation

Publish with us

Policies and ethics