Skip to main content

Decline and Restoration Ecology of Australian Seagrasses

  • Chapter
  • First Online:

Abstract

Since the first version of this book almost 30 years ago, significant losses of seagrass meadows have continued to be reported from around Australia as a result of natural and human induced perturbations. Conservative estimates indicate losses over the past two decades have more than doubled that estimated in the late 1990s. Conservation and mitigation of disturbance regimes have typically been the first line of defence, but ecological restoration or intervention is becoming increasingly necessary in a rapidly changing environment, and is potentially a more effective management strategy where seagrass habitat is already lost or heavily degraded. Accordingly, there has been an increase in the number of restoration studies and projects feeding our knowledge-base of restoration practice across Australia. Yet despite this increase, successful restoration has been rare, often uncoordinated, and almost always at a scale that is orders of magnitude lower than the scale of loss. Clearly, our understanding of the ecological mechanisms underlying successful and unsuccessful seagrass restoration is not keeping pace with the rates of loss and societal needs for restoration. Indeed, many orders of magnitude more restoration effort, in terms of science and practice and their interactions, will be required to prevent further seagrass loss. The science of seagrass restoration or restoration ecology is still a young science, but has strong foundations built from several decades of ecological research addressing many aspects of ecological interactions in seagrasses. While restoration has strong scientific underpinnings from ecological theory, it is clear that restoration ecology can also contribute to ecological theory by providing new and novel opportunities to advance our understanding of the mechanisms that promote functional ecosystems. In this chapter, we provide examples of this understanding across the levels of biological hierarchy, from genes to landscapes, and where possible include future strategic research directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abelson A, Halpern BS, Reed DC, Orth RJ, Kendrick GA, Beck MW, Belmaker J, Krause G, Edgar GJ, Airoldi L, Brokovich E, France R, Shashar N, de Blaeij A, Stambler N, Salameh P, Shechter M, Nelson PA (2016) Upgrading marine ecosystem restoration using ecological-social concepts. BioScience 66:156–163

    Article  PubMed  Google Scholar 

  • Ajemian MJ, Wetz JJ, Shipley-Lozano B, Shively JD, Stunz GW (2015) An analysis of artificial reef fish community structure along the northwestern Gulf of Mexico shelf: potential impacts of ‘Rigs-to-Reefs’ programs. PLoS ONE 10:e0126354

    Article  CAS  Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709

    Article  PubMed  CAS  Google Scholar 

  • Anon. (1979) Cockburn sound environmental study 1976–1979. Report No. 9., Department of Conservation and Environment, Perth, Western Australia

    Google Scholar 

  • Arias-Ortiz A, Serrano O, Masqué P, Lavery PS, Mueller U, Kendrick GA, Rozaimi M, Esteban A, Fourqurean JW, Marbà N, Mateo MA, Murray K, Rule M, Duarte CM (2018) A marine heat wave drives massive losses from the world’s largest seagrass carbon stocks. Nature Climate

    Google Scholar 

  • Balestri E, Lardicci C (2008) First evidence of a massive recruitment event in Posidonia oceanica: Spatial variation in first-year seedling abundance on a heterogeneous substrate. Est Coast Shelf Sci 76:634–641

    Article  Google Scholar 

  • Ball D, Soto-Berelov M, Young P (2014) Historical seagrass mapping in Port Phillip Bay, Australia. J Coast Cons 18:257–272

    Article  Google Scholar 

  • Bastyan GR (1986) Distribution of seagrass in Princess Royal Harbour and Oyster Harbour on the south coast of Western Australia. Technical series 1. Western Australian Department of Conservation and Environment, Perth, Western Australia

    Google Scholar 

  • Bastyan GR, Cambridge ML (2008) Transplantation as a method for restoring the seagrass Posidonia australis. Est Coast Shelf Sci 79:289–299

    Article  Google Scholar 

  • Bell SS (2006) Seagrasses and the metapopulation concept: developing a regional approach to the study of extinction, colonization, and dispersal. In: Kritzer JP, Sale PF (eds) Marine Metapopulations. Academic Press, London

    Google Scholar 

  • Bell SS, Fonseca MS, Motten LB (1997) Linking restoration and landscape ecology. Restor Ecol 5:318–323

    Article  Google Scholar 

  • Bell SS, Robbins BD, Jensen SL (1999) Gap dynamics in a seagrass landscape. Ecosystems 2:493–504

    Article  Google Scholar 

  • Biome—ESP (2007) Seagrass management plan. A report prepared for Gold Coast City Council by Biome—ESP BIOME-ESP, Waters, Queensland

    Google Scholar 

  • Blackburn NJ, Orth RJ (2013) Seed burial in Zostera marina (eelgrass): the role of infauna. Mar Ecol Prog Ser 474:135–145

    Article  Google Scholar 

  • Blandon A, zu Ermgassen PSE (2014) Quantitative estimate of commercial fish enhancement by seagrass habitat in southern Australia. Est Coast Shelf Sci 141:1–8

    Google Scholar 

  • Borum J, Pedersen O, Kotula L, Fraser MW, Statton J, Colmer TD, Kendrick GA (2016) Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species. Plant Cell Environ 39:1240–1250

    Article  PubMed  CAS  Google Scholar 

  • Bozzano M, Jalonen R, Thomas E, Boshier D, Gallo L, Cavers S, Bordács S, Smith P, Loo J (2014) (eds) Genetic considerations in ecosystem restoration using native tree species. State of the World’s Forest Genetic Resources – Thematic Study. FAO and Bioversity International, Rome

    Google Scholar 

  • Breed MF, Stead MG, Ottewell KM, Gardner MG, Lowe AJ (2013) Which provenance and where? Seed sourcing strategies for revegetation in a changing environment. Cons Genet 14:1–10

    Article  Google Scholar 

  • Bridgwood S (2006) Seagrass landscapes along a wave gradient. Ph.D. thesis, Murdoch University, Western Australia

    Google Scholar 

  • Broadhurst LM, Lowe AJ, Coates DJ, Cunningham SA, McDonald M, Vesk PA, Yates CJ (2008) Seed supply for broadscale restoration: maximizing evolutionary potential. Evol App 1:587–597

    Google Scholar 

  • Bryars S, Neverauskas VP (2004) Natural recolonisation of seagrasses at a disused sewage sludge outfall. Aquat Bot 80:283–289

    Article  Google Scholar 

  • Bryars S, Collings G, Miller D (2011) Nutrient exposure causes epiphytic changes and coincident declines in two temperate Australian seagrasses. Mar Ecol Prog Ser 441:89–103

    Article  CAS  Google Scholar 

  • Bulthuis DA (1983) Effects of in situ light reduction on density and growth of the seagrass Heterozostera tasmanica (Martens ex Aschers.) den Hartog in Western Port, Victoria, Australia. J Exp Mar Biol Ecol 67:91–103

    Article  Google Scholar 

  • Burnell OW, Russell BD, Irving AD, Connell SD (2013) Eutrophication offsets increased sea urchin grazing on seagrass caused by ocean warming and acidification. Mar Ecol Prog Ser 485:37–46

    Article  CAS  Google Scholar 

  • Burnell OW, Connell SD, Irving AD, Watling JR, Russell BD (2014) Contemporary reliance on bicarbonate acquisition predicts increased growth of seagrass Amphibolis antarctica in a high-CO2 world. Cons Physiol 2:cou052

    Google Scholar 

  • Cambridge ML, Kendrick GA (2009) Contrasting responses of seagrass transplants (Posidonia australis) to nitrogen, phosphorus and iron addition in an estuary and a coastal embayment. J Exp Mar Biol Ecol 371:34–41

    Article  Google Scholar 

  • Cambridge ML, McComb AJ (1984) The loss of seagrasses in Cockburn Sound Western Australia 1. The time course and magnitude of seagrass decline in relation to industrial development. Aquat Bot 20:229–244

    Article  Google Scholar 

  • Campbell SJ, McKenzie LJ (2004) Flood related loss and recovery of intertidal seagrass meadows in southern Queensland, Australia. Est Coast Shelf Sci 60:477–490

    Article  Google Scholar 

  • Clarke SM, Kirkman H (1989) Seagrass dynamic. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australian region. Elsevier, Amsterdam, pp 304–345

    Google Scholar 

  • Cole RA (2012) Effects of anthropogenic disturbance on sediment composition, infaunal assemblages and coverage of a Zostera marina bed. Marine Institute. Plymouth University, Plymouth

    Google Scholar 

  • Coles RG, Rasheed MA, McKenzie LJ, Grech A, York PH, Sheaves M, McKenna S, Bryant C (2015) The great barrier reef world heritage area seagrasses: managing this iconic australian ecosystem resource for the future. Est Coast Shelf Sci 153:A1–A12

    Article  Google Scholar 

  • Collier C, Waycott M, McKenzie L (2012) Light thresholds derived from seagrass loss in the coastal zone of the northern Great Barrier Reef, Australia. Ecol Indicat 23:211–219

    Article  Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144

    Article  Google Scholar 

  • Dekker AG, Brando VE, Anstee JM (2005) Retrospective seagrass change detection in a shallow coastal tidal Australian lake. Remote Sens Environ 97:415–433

    Article  Google Scholar 

  • Delefosse M, Kristensen E (2012) Burial of Zostera marina seeds in sediment inhabited by three polychaetes: laboratory and field studies. J Sea Res 71:41–49

    Article  Google Scholar 

  • Doney SC, Ruckelshaus MH, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Ann Rev Mar Sci 4:1–27

    Article  Google Scholar 

  • Duarte CM (2002) The future of seagrass meadows. Environ Cons 29:192–206

    Article  Google Scholar 

  • Duffy JE (2006) Biodiversity and the functioning of seagrass ecosystems. Mar Ecol Prog Ser 311:233–250

    Article  Google Scholar 

  • Elliott M (2011) Marine science and management means tackling exogenic unmanaged pressures and endogenic managed pressures—a numbered guide. Mar Pollut Bull 62:651–655

    Article  PubMed  CAS  Google Scholar 

  • EPA (1998) Changes in seagrass coverage and links to water quality off the Adelaide metropolitan coastline. Environment Protection Authority, Adelaide

    Google Scholar 

  • Evans SM, Sinclair EA, Poore AGB, Steinberg PD, Kendrick GA, Vergés A (2014) Genetic diversity in threatened Posidonia australis seagrass meadows. Cons Genet 15:717–728

    Article  Google Scholar 

  • Fodrie FJ, Heck KL Jr, Powers SP, Graham WM, Robinson KL (2010) Climate-related, decadal-scale assemblage changes of seagrass-associated fishes in the northern Gulf of Mexico. Glob Change Biol 16:48–59

    Article  Google Scholar 

  • Folmer EO, van der Geest M, Jansen E, Olff H, Anderson TM, Piersma T, van Gils JA (2012) Seagrass-sediment feedback: an exploration using a non-recursive structural equation model. Ecosystems 15:1380–1393

    Article  Google Scholar 

  • Fonseca MS, Bell SS (1998) Influence of physical setting on seagrass landscapes near Beaufort, North Carolina, USA. Mar Ecol Prog Ser 171:109–121

    Article  Google Scholar 

  • Fourqurean JW, Powell GVN, Kenworthy WJ, Zieman JC (1995) The effects of long-term manipulation of nutrient supply on competition between the seagrasses Thalassia testudinum and Halodule wrightii in Florida Bay. Oikos 72:349–358

    Article  Google Scholar 

  • Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Cons Biol 25:465–475

    Article  Google Scholar 

  • Franssen SU, Gu J, Winters G, Huylmans A-K, Wienpahl I, Sparwel M, Coyer JA, Olsen JL, Reusch TBH, Bornberg-Bauer E (2014) Genome-wide transcriptomic responses of the seagrasses Zostera marina and Nanozostera noltii under a simulated heatwave confirm functional types. Mar Genom 15:65–73

    Article  Google Scholar 

  • Fraser MW, Kendrick GA, Statton J, Hovey RK, Zavala-Perez A, Walker DI (2014) Extreme climate events lower resilience of foundation seagrass at edge of biogeographical range. J Ecol 102:1528–1536

    Article  Google Scholar 

  • Gillies CL, Fitzsimons JA, Branigan S, Hale L, Hancock B, Creighton C, Alleway H, Bishop MJ, Brown S, Chamberlain D, Cleveland B, Crawford C, Crawford M, Diggles B, Ford JR, Hamer P, Hart A, Johnston E, McDonald T, McLeod I, Pinner B, Russell K, Winstanley R (2015) Scaling-up marine restoration efforts in Australia. Ecol Manage Restor 16:84–85

    Article  Google Scholar 

  • Golicz AA, Schliep M, Lee HT, Larkum AWD, Dolferus R, Batley J, Chan C-KK, Sablok G, Ralph PJ, Edwards D (2015) Genome-wide survey of the seagrass Zostera muelleri suggests modification of the ethylene signalling network. J Exp Bot 66:1489–1498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grech A, Coles R, Marsh H (2011) A broad-scale assessment of the risk to coastal seagrasses from cumulative threats. Mar Pol 35:560–567

    Article  Google Scholar 

  • Hall J (2011) Southport Broadwater Parklands—stage 1 and 2 close out report. Gold Coast City Council, Southport

    Google Scholar 

  • Hamdorf I, Kirkman H (1995) Status of Australian seagrass: issues paper, March 1995. Fisheries Pollution and Marine Environment Committee, Canberra, A.C.T

    Google Scholar 

  • Hansen MM, Olivieri I, Waller DM, Nielsen EE (2012) Monitoring adaptive genetic responses to environmental change. Mol Ecol 21:1311–1329

    Article  PubMed  Google Scholar 

  • Harbison P, Wiltshire D (1993) northern spencer gulf resource processing strategy. Working Paper No. 2. Department of the Premier and Cabinet, Adelaide

    Google Scholar 

  • Harwell MC, Rhode JM (2007) Effects of edge/interior and patch structure on reproduction in Zostera marina L. in Chesapeake Bay, USA. Aquat Bot 87:147–154

    Article  Google Scholar 

  • Hastings K, Hesp P, Kendrick GA (1995) Seagrass loss associated with boat moorings at Rottnest Island, Western Australia. Ocean Coast Manag 26:225–246

    Article  Google Scholar 

  • Heck KL Jr, Carruthers TJ, Duarte CM, Hughes AR, Kendrick G, Orth RJ, Williams SW (2008) Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems 11:1198–1210

    Article  Google Scholar 

  • Hegge B, Kendrick G (2005) Assessing change in seagrass distribution in Esperance Bay. In: Wells FE, Walker DI, Kendrick GA (eds) The marine flora and fauna of Esperance. Western Australian Museum, Perth, Western Australia

    Google Scholar 

  • Hemminga MA, Duarte CM (2000) Seagrass ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hernawan UE, van Dijk K-J, Kendrick GA, Feng M, Biffen E, Lavery PS, McMahon K (2017) Historical processes and contemporary ocean currents drive genetic structure in the seagrass Thalassia hemprichii in the Indo-Australian Archipelago. Mol Ecol 26:1008–1021. https://doi.org/10.1111/mec.13966

    Article  Google Scholar 

  • Hocking PJ, Cambridge ML, McComb AJ (1981) The nitrogen and phosphorus nutrition of developing plants of two seagrasses, Posidonia australis and Posidonia sinuosa. Aquat Bot 11:245–261

    Google Scholar 

  • Hovey R, Cambridge ML, Kendrick GA (2011) Direct measurements of root growth and productivity I the seagrasses Posdionia australis and P. sinuosa. Limn Oceanog 56:394–402

    Article  CAS  Google Scholar 

  • Hughes AR, Stachowicz JJ (2004) Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc Natl Acad Sci USA 101:8998–9002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hughes AR, Inouye BD, Johnson MT, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623

    Article  PubMed  Google Scholar 

  • Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18(3):147–155

    Google Scholar 

  • Hyndes GA, Lavery PS (2005) Does transported seagrass provide an important trophic link in unvegetated, nearshore areas? Estuar Coast Shelf Sci 63:633–643

    Article  CAS  Google Scholar 

  • Hyndes GA, Heck KL Jr, Vergés A, Harvey ES, Kendrick GA, Lavery PS, McMahon K, Orth RJ, Pearce A, Vanderklift M (2016) Accelerating tropicalization and the transformation of temperate seagrass meadows. BioScience 66:938–948

    Article  PubMed  PubMed Central  Google Scholar 

  • Inglis GJ (2000) Disturbance-related heterogeneity in the seed banks of a marine angiosperm. J Ecol 88:88–99

    Article  Google Scholar 

  • Irving AD (2013) A century of failure for habitat recovery. Ecography 36:414–416

    Article  Google Scholar 

  • Irving AD (2014) Seagrasses of Spencer Gulf. In: Shepherd SA, Madigan S, Gillanders BM, Murray Jones S, Wiltshire D (eds) Natural history of Spencer Gulf. Royal Society of South Australia, Adelaide

    Google Scholar 

  • Irving AD, Tanner JE, Seddon S, Miller D, Collings GJ, Wear RJ, Hoare SL, Theil MJ (2010) Testing alternate ecological approaches to seagrass rehabilitation: links to life-history traits. J App Ecol 47:1119–1127

    Article  Google Scholar 

  • Irving AD, Tanner JE, Collings GJ (2014) Rehabilitating seagrass by facilitating recruitment: improving chances for success. Restor Ecol 22:134–141

    Article  Google Scholar 

  • Jahnke M, Serra IA, Bernard G, Procaccini G (2015) The importance of genetic make-up in seagrass restoration: a case study of the seagrass Zostera noltei. Mar Ecol Prog Ser 532:111–122

    Article  Google Scholar 

  • James JJ, Svejcar TJ, Rinella MJ (2011) Demographic processes limiting seedling recruitment in arid grassland restoration. J of Appl Ecol 48(4):961–969

    Google Scholar 

  • Jensen S, Bell S (2001) Seagrass growth and patch dynamics: cross-scale morphological plasticity. Plant Ecol 155:201–217

    Article  Google Scholar 

  • Jones TA (2013) When local isn’t best. Evol App 6:1109–1118

    Google Scholar 

  • Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  PubMed  Google Scholar 

  • Kaldy JE, Dunton KH (1999) Ontogenetic photosynthetic changes, dispersal and survival of Thalassia testudinum (turtle grass) seedlings in a sub-tropical lagoon. J of Exp Mar Biol and Ecol 240(2):193–212

    Google Scholar 

  • Kendrick GA, Aylward MJ, Hegge BJ, Cambridge ML, Hillman K, Wyllie A, Lord DA (2002) Changes in seagrass coverage in Cockburn Sound, Western Australia between 1867 and 1999. Aquat Bot 73:75–87

    Article  Google Scholar 

  • Kendrick GA, Holmes KW, Van Niel KP (2008) Multi-scale spatial patterns of three seagrass species with different growth dynamics. Ecography 31:191–200

    Article  Google Scholar 

  • Kendrick GA, Fourqurean JW, Fraser MW, Heithaus MR, Jackson G, Friedman K, Hallac D (2012a) Science behind management of Shark Bay and Florida Bay, two P-limited subtropical systems with different climatology and human pressures. Mar Freshw Res 63:941–951

    Article  Google Scholar 

  • Kendrick GA, Waycott M, Carruthers TJ, Cambridge ML, Hovey R, Krauss SL, Lavery PS, Les DH, Lowe RJ, Mascaró O, Ooi Lean Sim J, Orth RJ, Rivers D, Ruiz-Montoya L, Sinclair EA, Statton J, van Dijk K, Verduin J (2012b) The central role of dispersal in the maintenance and persistence of seagrass populations. BioScience 62:56–65

    Article  Google Scholar 

  • Kendrick GA, Orth RJ, Statton J, Hovey R, Ruiz Montoya L, Lowe RJ, Krauss SL, Sinclair EA (2017) Demographic and genetic connectivity: the role and consequences of reproduction, dispersal and recruitment in seagrasses. Biol Rev 92:921–938. https://doi.org/10.1111/brv.12261

    Article  PubMed  Google Scholar 

  • Kettenring KM, Mercer KL, Reinhardt Adams C, Hines J (2014) Application of genetic diversity–ecosystem function research to ecological restoration. J App Ecol 51:339–348

    Article  Google Scholar 

  • Kilminster K, McMahon K, Waycott M, Kendrick GA, Scanes P, McKenzie L, O’Brien KR, Lyons M, Ferguson A, Maxwell P (2015) Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci Total Environ 534:97–109

    Article  PubMed  CAS  Google Scholar 

  • King R, Hodgson B (1986) Aquatic angiosperms in coastal saline lagoons of New South Wales. IV. Long-term changes. In: Proceedings of the Linnean Society of New South Wales

    Google Scholar 

  • Kirkman H (1978) Decline of seagrass in northern areas of Moreton Bay, Queensland. Aquat Bot 5:63–76

    Article  Google Scholar 

  • Kirkman H (1997) Seagrasses of Australia. State of the environment technical paper series (Estuaries and the Sea). Department of the Environment, Canberra

    Google Scholar 

  • Kirkman H, Kuo J (1996)

    Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang XH (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Change Biol 19:103–132

    Article  Google Scholar 

  • Kritzer JP, Sale PF (2004) Metapopulation ecology in the sea: from Levins’ model to marine ecology and fisheries science. Fish Fish 5:131–140

    Article  Google Scholar 

  • Lamb JB, van der Water JAJM, Bourne DG, Altier C, Hein MY, Fiorenza EA, Abu N, Jompa J, Harvell CD (2017) Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355:731–733

    Google Scholar 

  • Larkum AWD, West RJ (1990) Long-term changes in of seagrass meadows in Botany Bay, Australia. Aquat Bot 37:55–70

    Article  Google Scholar 

  • Larkum AWD, Comb AJM, Shepherd SA (1989) Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australian region. Elsevier Science Limited

    Google Scholar 

  • Larkum AWD, Orth RJ, Duarte CM (2006) Seagrasses: biology, ecology and conservation. Springer, Netherlands

    Google Scholar 

  • Lauritano C, Ruocco M, Dattolo E, Buia MC, Silva J, Santos R, Olivé I, Costa MM, Procaccini G (2015) Response of key stress-related genes of the seagrass Posidonia oceanica in the vicinity of submarine volcanic vents. Biogeosciences 12:4185–4194

    Article  Google Scholar 

  • Lee HT, Golicz AA, Baper PE, Jiao Y, Tang H, Paterson AH, Sablok G, Krishnaraj RR, Chang C-KK, Batley J, Kendrick GA, Larkum AWD, Ralph PJ, Edwards D (2016) The genome of a southern hemisphere seagrass species (Zostera muelleri). Plant Physiol 172:272–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Marbà N, Duarte CM (1995) Coupling of seagrass (Cymodocea nodosa) patch dynamics to subaqueous dune migration. J Ecol 83:381–389

    Article  Google Scholar 

  • Marbà N, Duarte CM, Cebrián J, Gallegos ME, Olesen B, Sand-Jensen K (1996) Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast: elucidating seagrass decline. Mar Ecol Prog Ser 203–221

    Google Scholar 

  • Marbà N, Arias-Ortiz A, Masqué P, Kendrick GA, Mazarrasa I, Bastyan GR, Garcia-Orellana J, Duarte CM (2015) Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. J Ecol 103:296–302

    Article  CAS  Google Scholar 

  • Marion SR, Orth RJ (2010a) Innovative techniques for large-scale seagrass restoration using Zostera marina (eelgrass) seeds. Restor Ecol 18:514–526

    Article  Google Scholar 

  • Marion SR, Orth RJ (2010b) Factors influencing seedling establishment rates in eelgrass (Zostera marina) and their implications for seagrass restoration. Restor Ecol 18:549–559

    Article  Google Scholar 

  • Marion SR, Orth RJ (2012) Seedling establishment in eelgrass: seed burial effects on winter losses of developing seedlings. Mar Ecol Prog Ser 448:197–207

    Article  Google Scholar 

  • McDonald T, Gann GD, Jonson J, Dixon KW (2016) International standards for the practice of ecological restoration–including principles and key concepts. Society for Ecological Restoration, Washington, DC. Front cover photo credits: © Marcel Huijser, Errol Douwes, © Marcel Huijser Back cover photo credits: © Marcel Huijser. Soil-Tec, Inc., © Marcel Huijser, Bethanie Walder

    Google Scholar 

  • McKenna S, Jarvis J, Sankey T, Reason C, Coles R, Rasheed M (2015) Declines of seagrasses in a tropical harbour, North Queensland, Australia, are not the result of a single event. J Biosci (Bangalore) 40:389–398

    Article  Google Scholar 

  • McMahon K, Ruiz‐Montoya L, Kendrick GA, Krauss SL, Waycott M, Verduin J, Lowe R, Statton J, Brown E, Duarte C (2014) The movement ecology of seagrasses. Proc Royal Soc B Biol Sci 281:20140878

    Google Scholar 

  • McSkimming C, Connell SD, Russell BW, Tanner JE (2016) Habitat restoration: early signs and extent of faunal recovery relative to seagrass recovery. Estuar Coast Shelf Sci 171:51–57

    Article  Google Scholar 

  • Meehan AJ (1997) Historical changes in seagrass, mangrove and saltmarsh communities in Merimbula Lake and Pambula Lake. Unpublished honours research report. Environmental Science Program, Faculty of Science, The University of Wollongong

    Google Scholar 

  • Meehan AJ, West RJ (2000) Recovery times for a damaged Posidonia australis bed in south eastern Australia. Aquat Bot 67:161–167

    Article  Google Scholar 

  • Meehan AJ, West RJ (2002) Experimental transplanting of Posidonia australis seagrass in Port Hacking, Australia, to assess the feasibility of restoration. Mar Pollut Bull 44:25–31

    Article  PubMed  CAS  Google Scholar 

  • Menges ES (2000) Population viability analyses in plants: challenges and opportunities. Trends Ecol Evol 15:51–56

    Article  PubMed  CAS  Google Scholar 

  • Merila J (2012) Evolution in response to climate change: in pursuit of the missing evidence. BioEssays 34:811–818

    Article  PubMed  Google Scholar 

  • Miller BP, Sinclair EA, Menz MHM, Elliott CP, Bunn E, Commander LE, Dalziell E, David E, Erickson TE, Golos PJ, Krauss SL, Lewandrowski W, Mayence CE, Merino-Martin L, Merritt DJ, Nevill P, Davis B, Phillips R, Ritchie AL, Ruoss S, Stevens J (2017) A comprehensive framework of the science necessary to restore sustainable and biodiverse ecosystems resilient to global change. Restor Ecol 25:605–617

    Article  Google Scholar 

  • Moberg F, Rönnbäck P (2003) Ecosystem services of the tropical seascape: interactions, substitutions and restoration. Ocean Coast Manag 46(1):27–46

    Article  Google Scholar 

  • Morris L, Jenkins G, Hatton D, Smith T (2007) Effects of nutrient additions on intertidal seagrass (Zostera muelleri) habitat in Western Port, Victoria, Australia. Mar Freshwtr Res 58:666–674

    Article  CAS  Google Scholar 

  • Mumby PJ (2006) Connectivity of reef fish between mangroves and coral reefs: algorithms for the design of marine reserves at seascape scales. Biol Cons 128(2):215–222

    Article  Google Scholar 

  • Nagelkerken I, Van der Velde G, Gorissen MW, Meijer GJ, Van’t Hof T, Den Hartog C (2000) Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar Coast Shelf Sci 51(1):31–44

    Article  Google Scholar 

  • Neverauskas V (1987) Monitoring seagrass beds around a sewage sludge outfall in South Australia. Mar Pollut Bull 18:158–164

    Article  CAS  Google Scholar 

  • Nyström M, Norström AV, Blenckner T, de la Torre-Castro M, Eklöf JS, Folke C, Troell M (2012) Confronting feedbacks of degraded marine ecosystems. Ecosystems 15(5): 695–710

    Google Scholar 

  • Oldham CE, Lavery PS, McMahon K, Pattiaratchi C, Chiffings TW (2010) Seagrass wrack dynamics in Geographe Bay, Western Australia. Report prepared for the Department of Transport, Western Australia and Shire of Busselton

    Google Scholar 

  • Olsen JL, Rouzé P, Verhelst B, Lin YC, Bayer T, Collen J, Dattolo E, De Paoli E, Dittami S, Maumus F, Michel G (2016) The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530:331–335

    Article  PubMed  CAS  Google Scholar 

  • Ooi JLS, Van Niel KP, Kendrick GA, Holmes K (2014) Spatial structure of seagrass suggests that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical multispecies meadows. PlosONE 9:e86782

    Article  CAS  Google Scholar 

  • Orth RJ (1977) Effects of nutrient enrichment on the growth of eelgrass, Zostera marina, in the Chesapeake Bay, Virginia. Mar Biol 44:187–l94

    Google Scholar 

  • Orth RJ, Moore KA (1982) The effect of fertilizers on transplanted eelgrass, Zostera marina L. in the Chesapeake Bay. In: Webb FJ (ed) Proceedings of ninth annual conference on wetlands restoration and creation. Hillsborough Community College, Tampa, Florida, pp 104–131

    Google Scholar 

  • Orth RJ, van Montfrans J (1984) The role of micrograzing on seagrass periphyton: a review. Aquat Bot 18:43–69

    Article  Google Scholar 

  • Orth RJ, Luckenbach M, Moore KA (1994) Seed dispersal in a marine macrophyte: implications for colonization and restoration. Ecology 1927–1939

    Google Scholar 

  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. BioScience 56:987–996

    Article  Google Scholar 

  • Orth RJ, Moore KA, Marion SR, Wilcox DJ, Parrish DB (2012) Seed addition facilitates eelgrass recovery in a coastal bay system. Mar Ecol Prog Ser 448:177–195

    Article  Google Scholar 

  • Paling EI, Van Keulen M, Wheeler KD, Phillips J, Dyhrberg R (2003) Influence of spacing on mechanically transplanted seagrass survival in a high wave energy regime. Restor Ecol 11(1):56–61

    Google Scholar 

  • Perring MP, Standish RJ, Price JN, Craig MD, Erickson TE, Ruthrof KX, Whiteley AS, Valentine LE, Hobbs RJ (2015) Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere 6:1–25

    Article  Google Scholar 

  • Peterson BJ, Heck KL Jr (2001) Positive interactions between suspension-feeding bivalves and seagrass—a facultative mutualism. Mar Ecol Prog Ser 213:143–155

    Article  Google Scholar 

  • Piazzi L, Balestri E, Magri M, Cinelli F (1998) Experimental transplanting of Posidonia oceanica (L.) Delile into a disturbed habitat in the Mediterranean Sea. Bot Mar 41:593–602

    Google Scholar 

  • Poiner IR, Staples DJ, Kenyon RA (1987) Seagrass communities of the Gulf of Carpentaria, Australia. Mar Freshw Res 38:121–131

    Article  Google Scholar 

  • Prado P, Heck KL Jr (2011) Seagrass selection by omnivorous and herbivorous consumers: determining factors. Mar Ecol Prog Ser 429:45–55

    Article  Google Scholar 

  • Preen A, Long WL, Coles R (1995) Flood and cyclone related loss, and partial recovery, of more than 1000 km2 of seagrass in Hervey Bay, Queensland, Australia. Aquat Bot 52:3–17

    Article  Google Scholar 

  • Prober SM, Byrne M, Mclean EH, Steane DA, Potts BM, Vaillancourt RE, Stock WD (2015) Climate-adjusted provenancing: a strategy for climate-resilient ecological restoration. Front Ecol Evol 3:65

    Article  Google Scholar 

  • Ralph PJ, Durako MJ, Enríquez S, Collier CJ, Doblin MA (2007) Impact of light limitation on seagrasses. J Exp Mar Biol Ecol 350:176–193

    Article  Google Scholar 

  • Rasheed MA, McKenna SA, Carter AB, Coles RG (2014) Contrasting recovery of shallow and deep water seagrass communities following climate associated losses in tropical north Queensland, Australia. Mar Pollut Bull 83:491–499

    Article  PubMed  CAS  Google Scholar 

  • Reynolds LK, McGlathery KJ, Waycott M (2012) Genetic diversity enhances restoration success by augmenting ecosystem services. PLoS ONE 7(6):e38397

    Google Scholar 

  • Reynolds LK, Waycott M, McGlathery KJ (2013) Restoration recovers population structure and landscape genetic connectivity in a dispersal-limited ecosystem. J Ecol 101:1288–1297

    Article  Google Scholar 

  • Rivers DO, Kendrick GA, Walker DI (2011) Microsites play an important role for seedling survival in the seagrass Amphibolis antarctica. J Exp Mar Biol Ecol 401:29–35

    Article  Google Scholar 

  • Ruiz-Montoya L, Lowe R, Van Niel K, Kendrick G (2012) The role of hydrodynamics on seed dispersal in seagrasses. Limnol Oceanogr 57:1257–1265

    Article  Google Scholar 

  • Saunders MI, Bayraktarov E, Roelfsema CM, Leon JX, Samper-Villarreal J, Phinn SR, Lovelock CE, Mumby PJ (2015) Spatial and temporal variability of seagrass at Lizard Island, Great Barrier Reef. Bot Mar 58:35–49

    Article  CAS  Google Scholar 

  • Seddon S, Connolly RM, Edyvane KS (2000) Large‐scale seagrass dieback in northern Spencer Gulf, South Australia. Aquat Bot 66:297–310

    Google Scholar 

  • Sergeev V, Clarke S, Shepherd S (1988) Motile macroepifauna of the seagrasses, Amphibolis and Posidonia, and unvegetated sandy substrata in Holdfast Bay, South Australia. Trans R Soc South Aust 112:97–108

    Google Scholar 

  • Serrano O, Lavery PS, Masque P, Inostroza K, Bongiovanni J, Duarte CM (2016) Seagrass sediments reveal the long-term deterioration of an estuarine ecosystem. Global Change Biol

    Google Scholar 

  • Shephard S, McComb A, Bulthuis D, Neverauskas V, Steffensen D, West R (1989) Decline of seagrasses. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses. Elsevier, Amsterdam

    Google Scholar 

  • Shepherd S (1986) Coastal waters. In: Nance C, Speight DL (eds) A land transformed: environmental change in South Australia Longman Cheshire, Adelaide. Longman, Melbourne

    Google Scholar 

  • Short FT, Wyllie-Echeverria S (1996) Natural and human-induced disturbance of seagrasses. Environ Conserv 23:17–27

    Article  Google Scholar 

  • Silliman BR, Schrack E, He Q, Cope R, Santoni A, van der Heide T, Jacobi R, Jacobi M, van de Koppel J (2015) Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc Natl Acad Sci 112:14295–14300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sinclair EA, Verduin J, Krauss SK, Hardinge J, Anthony J, Kendrick GA (2013) A genetic assessment of a successful seagrass meadow (Posidonia australis) restoration trial. Ecol Manag Restor 14:68–71

    Article  Google Scholar 

  • Sinclair EA, Krauss SL, Anthony J, Hovey RK, Kendrick GA (2014) The interaction of environment and genetic diversity within meadows of the seagrass Posidonia australis (Posidoniaceae). Mar Ecol Prog Ser 506:87–98

    Article  Google Scholar 

  • Sinclair EA, Statton J, Hovey RK, Anthony J, Dixon KW, Kendrick GA (2016) Reproduction at the extremes: pseudovivipary and genetic mosaicism in Posidonia australis Hooker (Posidoniaceae). Ann Bot. https://doi.org/10.1093/aob/mcv162

    Article  PubMed  Google Scholar 

  • Society for Ecological Restoration (2004) The SER international primer on ecological. Restoration. http://www.ser.org

  • Statton J, Dixon KW, Hovey RK, Kendrick GA (2012) A comparative assessment of approaches and outcomes for seagrass revegetation in Shark Bay and southern Florida. Mar Freshw Res 63:984–993

    Article  Google Scholar 

  • Statton J, Cambridge ML, Dixon KW, Kendrick GA (2013) Aquaculture of Posidonia australis seedlings for seagrass restoration programs: effect of sediment type and organic enrichment on growth. Restor Ecol 21(2):250–259

    Article  Google Scholar 

  • Statton J, Gustin-Craig S, Dixon KW, Kendrick GA (2015) Edge effects along a seagrass margin result in an increased grazing risk on Posidonia australis transplants. PLoS ONE 10:e0137778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Statton J, Montoya LR, Orth RJ, Dixon KW, Kendrick GA (2017) Identifying critical recruitment bottlenecks limiting seedling establishment in a degraded seagrass ecosystem. Sci Rep 7, 14786

    Google Scholar 

  • Tanner JE (2015) Restoration of the seagrass Amphibolis antarctica—temporal variability and long-term success. Estuar Coasts 38:668–678

    Article  CAS  Google Scholar 

  • Tanner JE, Irving AD, Fernandes M, Fotheringham D, McArdle A, Murray-Jones S (2014) Seagrass rehabilitation off metropolitan Adelaide: a case study of loss, action, failure and success. Ecol Manage Restor 15:168–179

    Article  Google Scholar 

  • Thomson J, Burkholder D, Heithaus M, Fourqurean J, Fraser MW, Statton J, Kendrick GA (2015) Extreme temperatures, foundation species and abrupt ecosystem shifts: an example from an iconic seagrass ecosystem. Glob Change Biol 21:1463–1474

    Article  Google Scholar 

  • Valdemarsen T, Wendelboe K, Egelund JT, Kristensen E, Flindt MR (2011) Burial of seeds and seedlings by the lugworm Arenicola marina hampers eelgrass (Zostera marina) recovery. J Exp Mar Biol Ecol 410:45–52

    Article  Google Scholar 

  • van der Heide T, van Nes EH, van Katwijk MM, Olff H, Smolders AJ (2011) Positive feedbacks in seagrass ecosystems—evidence from large-scale empirical data. PLoS ONE 6:e16504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Katwijk MM, Thorhaug A, Marbà N, Orth RJ, Duarte CM, Kendrick GA, Althuizen IHJ, Balestri E, Bernard G, Cambridge ML, Cunha A, Durance C, Giesen W, Han Q, Hosokawa S, Kiswara W, Komatsu T, Lardicci C, Lee K-S, Meinesz A, Nakaoka M, O’Brien KR, Paling EI, Pickerell C, Ransijn AMA, Verduin JJ (2016) Global analysis of seagrass restoration: the importance of large-scale planting. J Appl Ecol 53(2):567–578

    Article  Google Scholar 

  • Van Keulen M, Paling EI, Walker CJ (2003) Effect of planting unit size and sediment stabilization on seagrass transplants in Western Australia. Restor Ecol 11:50–55

    Article  Google Scholar 

  • Vande Mijnsbrugge K, Bischoff A, Smith B (2010) A question of origin: where and how to collect seed for ecological restoration. Basic Appl Ecol 11:300–311

    Article  Google Scholar 

  • Vergés A, Steinberg PD, Hay ME, Poore AGB, Campbell AH, Ballesteros E, Booth DJ, Coleman MA, Feary DA, Figueira W, Langlois TJ, Marzinelli EM, Mizerek T, Mumby PJ, Nakamura Y, Roughan M, van Sebille E, Gupta AS, Smale DA, Tomas F, Wernberg T, Wilson SK (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc R Soc B 281:20140846

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker D, McComb A (1992) Seagrass degradation in Australian coastal waters. Mar Pollut Bull 25:191–195

    Article  Google Scholar 

  • Walker DI, Kendrick GA, McComb AJ (1988) Distribution of seagrasses in Shark Bay, Western Australia, with notes on their ecology. Aquat Bot 30:305–317

    Article  Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. PNAS 106:12377–12381

    Article  PubMed  PubMed Central  Google Scholar 

  • Wear RJ, Tanner JE, Hoare SL (2010) Facilitating recruitment of Amphibolis as a novel approach to seagrass rehabilitation in hydrodynamically active waters. Mar Freshw Res 61(10):1123–1133

    Article  CAS  Google Scholar 

  • Weatherall EJ, Jackson EL, Hendry RA, Campbell ML (2016) Quantifying the dispersal potential of seagrass vegetative fragments: a comparison of multiple subtropical species. Estuar Coast Shelf Sci 169:207–215

    Article  Google Scholar 

  • Weeks AR, Sgrò CM, Young AG, Frankham R, Mitchell NJ, Miller KA, Byrne M, Coates DJ, Eldridge MDB, Sunnucks P, Breed MF, James EA, Hoffmann AA (2011) Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evol App 4:709–725

    Article  Google Scholar 

  • Weinstein D, Shugart H (1983) Ecological modeling of landscape dynamics. Disturbance and ecosystems. Springer, Berlin

    Google Scholar 

  • White KS, Westera MB, Kendrick GA (2011) Spatial patterns in fish herbivory in a temperate Australian seagrass meadow. Estuar Coast and Shelf Sci 93(4):366–374

    Google Scholar 

  • Williams RJ, Meehan AJ (2001) The macrophytes of Port Hacking, NSW. NSW Fisheries Final Report Series, NSW Fisheries Cronulla, Australia

    Google Scholar 

  • Williams RJ, Meehan AJ, West G (2003) Status and trend mapping of aquatic vegetation in NSW estuaries. In: Woodroffe CD, Furness RA (eds) Coastal GIS 2003: an integrated approach to Australian coastal issues. Wollongong Papers on Maritime Policy, No. 14

    Google Scholar 

  • Williams AV, Nevill PG, Krauss SL (2014) Next generation restoration genetics: applications and opportunities. Trends Plant Sci 19(8):529–537.

    Article  PubMed  CAS  Google Scholar 

  • York PH, Carter AB, Chartrand K, Sankey T, Wells L, Rasheed MA (2015) Dynamics of a deep-water seagrass population on the Great Barrier Reef: annual occurrence and response to a major dredging program. Sci Rep 5:13167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This paper is contribution no. 3614 of the Virginia Institute of Marine Science, The College of William and Mary. Kendrick, Orth, Dixon Sinclair and Statton were partially funded by ARC LP130100155, LP130100918 and LP160101011. Jackson was funded by the Ian Potter Foundation, Norman Wettenhall Foundation and Fitzroy Basin Association. Figure 20.3 utilised the IAN/UMCES SAV Symbol Library courtesy of the Integration and Application Network, University of Maryland Center for Environmental Science (ian.umces.edu/symbols/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Statton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Statton, J. et al. (2018). Decline and Restoration Ecology of Australian Seagrasses. In: Larkum, A., Kendrick, G., Ralph, P. (eds) Seagrasses of Australia. Springer, Cham. https://doi.org/10.1007/978-3-319-71354-0_20

Download citation

Publish with us

Policies and ethics