Skip to main content

Mapping, Monitoring and Modelling Seagrass Using Remote Sensing Techniques

  • Chapter
  • First Online:
Seagrasses of Australia

Abstract

This chapter explains the types of information on the biophysical properties of seagrass and its surrounding environments, which are able to be measured, mapped, monitored and/or modelled using remote sensing techniques. This includes specifying the environmental conditions where these approaches do not work. “Remote sensing” refers to the use of a sensor not in direct contact with the target to measure one or more of its bio-geo-physical-chemical properties. This includes measurements from satellites, airborne , and remotely operated or autonomous above- and below-water systems. Six key topics are covered to show how remote sensing and its integration with ecological field survey methods, ecological theory and modelling, is an operational and accessible tool. Chapters 7, 911 in this book are complementary as they explain the biological and physiological bases of seagrasses and how they interact with light. The text is written from ecological perspective to explain “how to” implement remote sensing approaches at scales relevant to science and management problems. Specific details are presented for mapping and monitoring seagrass: extent, composition and biophysical properties from plant to rhizome and regional scales over 103 km2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MP, Saunders MI, Maxwell PS, Tuazon D, Roelfsema CM, Callaghan DP, Leon J, Grinham AR, O’Brien KR (2015) Prioritizing localized management actions for seagrass conservation and restoration using a species distribution model. Aquat Conserv Mar Freshw Ecosyst

    Google Scholar 

  • Andréfouët S, Kramer P, Torres-Pulliza D, Joyce KE, Hochberg EJ, Garza-Pérez R, Mumby PJ, Riegl B, Yamano H, White WH, Zubia M, Brock JC, Phinn SR, Naseer A, Hatcher BG, Muller-Karger FE (2003) Multi-site evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sens Environ 88:128–143

    Article  Google Scholar 

  • Beaman R (2010) 3DGBR: A high-resolution depth model for the Great Barrier Reef and Coral Sea. In: Marine tropical sciences research facility (MTSRF). Project 2.5i.1a Final Report. Reef and Rainforest Research Centre, Cairns, Australia

    Google Scholar 

  • Bearlin AR, Burgman MA, Regan HM (1999) A stochastic model for seagrass (Zostera muelleri) in Port Phillip Bay, Victoria, Australia. Ecol Model 118:131–148

    Article  Google Scholar 

  • Benson M, Garmestani A (2011) Can we manage for resilience? The integration of resilience thinking into natural resource management in the United States. Environ Manage 48:392–399

    Article  PubMed  Google Scholar 

  • Blaschke T, Johansen K, Tiede D (2011) Object-based image analysis for vegetation mapping and monitoring. Adv Environ Remote Sens: Sens Algorithms Appl 241–271

    Google Scholar 

  • Boström C, Jackson EL, Simenstad CA (2006) Seagrass landscapes and their effects on associated fauna: a review. Estuar Coast Shelf Sci 68:383–403

    Article  Google Scholar 

  • Brando VE, Dekker AG (2003) Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Trans Geosci Remote Sens 41:1378–1387

    Article  Google Scholar 

  • Callaghan DP, Leon JX, Saunders MI (2015) Wave modelling as a proxy for seagrass ecological modelling: comparing fetch and process-based predictions for a bay and reef lagoon. Estuar Coast Shelf Sci 153:108–120

    Google Scholar 

  • Carr J, D’Odorico P, McGlathery K, Wiberg P (2010) Stability and bistability of seagrass ecosystems in shallow coastal lagoons: role of feedbacks with sediment resuspension and light attenuation. J Geophys Res Biogeosci 2005–2012:115

    Google Scholar 

  • Carr JA, D’Odorico P, McGlathery KJ, Wiberg PL (2011) Modeling the effects of climate change on eelgrass stability and resilience: future scenarios and leading indicators of collapse. Mar Ecol Prog Ser 448:289–301

    Article  Google Scholar 

  • Carr JA, D’Odorico P, McGlathery KJ, Wiberg PL (2012) Stability and resilience of seagrass meadows to seasonal and interannual dynamics and environmental stress. J Geophys Res Biogeosci 2005–2012:117

    Google Scholar 

  • Carruthers TJB, Dennison WC, Longstaff BJ, Waycott M, Abal EG, McKenzie LJ, Long WJL (2002) Seagrass habitats of Northeast Australia: models of key processes and controls. Bull Mar Sci 71:1153–1169

    Google Scholar 

  • Carruthers TJB, Dennison WC, Kendrick GA, Waycott M, Walker DI, Cambridge ML (2007) Seagrasses of south–west Australia: a conceptual synthesis of the world’s most diverse and extensive seagrass meadows. J Exp Mar Biol Ecol 350:21–45

    Article  Google Scholar 

  • Carter AB, Mckenna SA, Rasheed MA, Mckenzie L, Coles RG (2016) Seagrass mapping synthesis: a resource for coastal management in the Great Barrier Reef World Heritage Area. In: Report to the national environmental science programme. Reef and Rainforest Research Centre Limited, Cairns, 22 p

    Google Scholar 

  • CEOS (2015) The earth observation handbook [Online]. Committee on Earth Observation Satellites. Available: http://www.eohandbook.com/

  • Cogan CB, Todd BJ, Lawton P, Noji TT (2009) The role of marine habitat mapping in ecosystem-based management. ICES J Mar Sci: J du Conseil 66:2033–2042

    Article  Google Scholar 

  • Collier C, Waycott M, McKenzie L (2012) Light thresholds derived from seagrass loss in the coastal zone of the northern Great Barrier Reef, Australia. Ecol Ind 23:211–219

    Article  Google Scholar 

  • Congalton RG, Green K (1999) Assessing the accuracy of remotely sensed data: principles and practices. CRC Press, New York

    Google Scholar 

  • Creed JC (1999) Distribution, seasonal abundance and shoot size of the seagrass Halodule wrightii near its southern limit at Rio de Janeiro state, Brazil. Aquat Bot 65:47–58

    Article  Google Scholar 

  • Dahdouh-Guebas F (2002) The use of remote sensing and GIS in the sustainable management of tropical coastal ecosystems. Environ Dev Sustain 4:93–112

    Article  Google Scholar 

  • de Boer W (2007) Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: a review. Hydrobiologia 591:5–24

    Article  CAS  Google Scholar 

  • Dekker AG, Brando VE, Anstee JM (2005) Retrospective seagrass change detection in a shallow coastal tidal Australian lake. Remote Sens Environ 97:415–433

    Article  Google Scholar 

  • Dekker A, Brando V, Anstee J, Fyfe S, Malthus T, Karpouzli E (2006) Remote sensing of seagrass ecosystems: use of spaceborne and airborne sensors. In: Seagrasses: biology, ecology and conservation, Springer, Netherlands

    Google Scholar 

  • Dennison WC, Abal EG (1999) Moreton Bay study: a scientific basis for the healthy waterways campaign. South East QLD Regional Water Quality Management Strategy Team

    Google Scholar 

  • Duarte CM (1991) Seagrass depth limits. Aquat Bot 40:363–377

    Article  Google Scholar 

  • Elkalay K, Frangoulis C, Skliris N, Goffart A, Gobert S, Lepoint G, Hecq J-H (2003) A model of the seasonal dynamics of biomass and production of the seagrass Posidonia oceanica in the Bay of Calvi (Northwestern Mediterranean). Ecol Model 167:1–18

    Article  CAS  Google Scholar 

  • Farina A (1998) Principles and methods in landscape ecology. Springer, Netherlands

    Book  Google Scholar 

  • Ferwerda J, de Leeuw J, Atzberger C, Vekerdy Z (2007) Satellite-based monitoring of tropical seagrass vegetation: current techniques and future developments. Hydrobiologia 591:59–71

    Article  Google Scholar 

  • Fong P, Harwell MA (1994) Modeling seagrass communities in tropical and subtropical bays and estuaries: a mathematical model synthesis of current hypotheses. Bull Mar Sci 54(25):757–781

    Google Scholar 

  • Fonseca M, Whitfield PE, Kelly NM, Bell SS (2002) Modeling seagrass landscape pattern and associated ecological attributes. Ecol Appl 12:218–237

    Article  Google Scholar 

  • Foster G, Gleason A, Costa B, Battista T, Taylor C (2013) Acoustic applications. In: Goodman JA, Purkis SJ, Phinn S R (eds) Coral reef remote sensing. Springer, Netherlands

    Google Scholar 

  • Fyfe SK (2003) Spatial and temporal variation in spectral reflectance: are seagrass species spectrally distinct? Limnol Oceanogr 48:464–479

    Article  Google Scholar 

  • Grech A, Coles RG (2010) An ecosystem-scale predictive model of coastal seagrass distribution. Aquat Conserv Mar Freshw Ecosyst 20:437–444

    Article  Google Scholar 

  • Green EP, Mumby PJ, Edwards AJ, Clark CD (1996) A review of remote sensing for the assessment and management of tropical coastal resources. Coast Manage 24:1–40

    Article  Google Scholar 

  • Gunderson LH, Allen CR, Holling CS (2009) Foundations of ecological resilience. In: Gunderson LH, Allen CR, Holling CS (eds) Island Press

    Google Scholar 

  • Hedley JD, Harborne AR, Mumby PJ (2005) Technical note: simple and robust removal of sun glint for mapping shallow-water benthos. Int J Remote Sens 26:2107–2112

    Article  Google Scholar 

  • Hopley D, Smithers S, Parnell K (2007) The Geomorphology of the Great Barrier Reef. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hossain MS, Bujang JS, Zakaria MH, Hashim M (2015) The application of remote sensing to seagrass ecosystems: an overview and future research prospects. Int J Remote Sens 36:61–114

    Article  Google Scholar 

  • Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633–642

    Article  PubMed  Google Scholar 

  • Hyland SJ, Courtney A, Butler C (1989) Distribution of seagrass in the Moreton region from Coolangatta to Noosa [Queensland]. Information Series-Queensland Department of Primary Industries (Australia)

    Google Scholar 

  • Kelly NM, Fonseca M, Whitfield P (2001) Predictive mapping for management and conservation of seagrass beds in North Carolina. Aquat Conserv Mar Freshw Ecosyst 11:437–451

    Article  Google Scholar 

  • Kendrick GA, Eckersley J, Walker DI (1999) Landscape-scale changes in seagrass distribution over time: a case study from Success Bank, Western Australia. Aquat Bot 65:293–309

    Article  Google Scholar 

  • Kendrick GA, Marbà N, Duarte CM (2005) Modelling formation of complex topography by the seagrass Posidonia oceanica. Estuar Coast Shelf Sci 65:717–725

    Article  Google Scholar 

  • Kenworthy WJ (2000) The role of sexual reproduction in maintaining populations of Halophila decipiens: implications for the biodiversity and conservation of tropical seagrass ecosystems. Pac Conserv Biol 5:260

    Article  Google Scholar 

  • Kilminster K, Mcmahon K, Waycott M, Kendrick GA, Scanes P, Mckenzie L, O’Brien KR, Lyons M, Ferguson A, Maxwell P, Glasby T, Udy J (2015) Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci Total Environ

    Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Koch EW (2001) Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24:1–17

    Article  Google Scholar 

  • Koch EW, Ackerman J D, Verduin J, van Keulen M (2006) Fluid dynamics in seagrass ecology—from molecules to ecosystems. In: Seagrasses: biology, ecology and conservation. Springer, New York

    Google Scholar 

  • Koch MS, Schopmeyer SA, Nielsen OI, Kyhn-Hansen C, Madden CJ (2007) Conceptual model of seagrass die-off in Florida Bay: links to biogeochemical processes. J Exp Mar Biol Ecol 350:73–88

    Article  CAS  Google Scholar 

  • Larkum AWD, Orth R, Duarte CM (2006) Seagrasses: biology ecology and conservation. Springer, Netherlands

    Google Scholar 

  • Lathrop RG, Montesano P, Haag S (2006) Multi-scale segmentation approach to mapping seagrass habitats using airborne digital camera imagery. Photogram Eng Remote Sens 72:665–675

    Article  Google Scholar 

  • Leon J (2012) A 20 m spatial resolution seamless multisource Digital Elevation/Depth Model for Lizard Island, northern Great Barrier Reef. Supplement to: Leon JX, Phinn SR, Hamylton S, Saunders MI (2013) Filling the ‘white ribbon’—a seamless multisource Digital Elevation/Depth Model for Lizard Island, northern Great Barrier Reef [Online]. Available http://doi.pangaea.de/10.1594/PANGAEA.804566

  • Lyons M, Phinn S, Roelfsema C (2011) Integrating quickbird multi-spectral satellite and field data: mapping bathymetry, seagrass cover, seagrass species and change in Moreton Bay, Australia in 2004 and 2007. Remote Sens 3:42–64

    Article  Google Scholar 

  • Lyons MB, Phinn SR, Roelfsema CM (2012) Long term land cover and seagrass mapping using Landsat and object-based image analysis from 1972 to 2010 in the coastal environment of South East Queensland, Australia. ISPRS J Photogram Remote Sens 71:34–46

    Article  Google Scholar 

  • Lyons MB, Roelfsema CM, Phinn SR (2013) Towards understanding temporal and spatial dynamics of seagrass landscapes using time-series remote sensing. Estuar Coast Shelf Sci 120:42–53

    Article  Google Scholar 

  • Lyons M, Roelfsema C, Kovacs E, Samper-Villarreal J, Saunders M, Maxwell P, Phinn S (2015) Rapid monitoring of seagrass biomass using a simple linear modelling approach, in the field and from space. Mar Ecol Prog Ser 530:1–14

    Article  Google Scholar 

  • Lyzenga DR (1978) Passive remote sensing techniques for mapping water depth and bottom features. Appl Opt 17:379–383

    Article  CAS  PubMed  Google Scholar 

  • Lyzenga DR (1981) Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data. Int J Remote Sens 2:71–82

    Article  Google Scholar 

  • March D, Alós J, Cabanellas-Reboredo M, Infantes E, Jordi A, Palmer M (2013) A Bayesian spatial approach for predicting seagrass occurrence. Estuar Coast Shelf Sci 131:206–212

    Article  Google Scholar 

  • Meling-López AE, Ibarra-Obando SE (1999) Annual life cycles of two Zostera marina L. populations in the Gulf of California: contrasts in seasonality and reproductive effort. Aquat Bot 65:59–69

    Article  Google Scholar 

  • Mobley C (1994) Light and water: radiative transfer in natural waters academic. San Diego, Calif, p 592

    Google Scholar 

  • O’Brien KR, Grinham AR, Roelfsema Chris M, Saunders Megan I, Dennison W (2011) Viability criteria for the presence of the seagrass Zostera muelleri in Moreton Bay, based on benthic light dose. In: Modelling and simulation society of Australia and New Zealand

    Google Scholar 

  • Orth RJ, Carruthers TJ, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996

    Article  Google Scholar 

  • Phinn S, Dekker A, Brando VE, Roelfsema C (2005) Mapping water quality and substrate cover in optically complex coastal and reef waters: an integrated approach. Mar Pollut Bull 51:459–469

    Article  CAS  PubMed  Google Scholar 

  • Phinn S, Roelfsema C, Dekker A, Brando V, Anstee J (2008) Mapping seagrass species, cover and biomass in shallow waters: an assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia). Remote Sens Environ 112:3413–3425

    Article  Google Scholar 

  • Plus M, Chapelle A, Ménesguen A, Deslous-Paoli J-M, Auby I (2003) Modelling seasonal dynamics of biomasses and nitrogen contents in a seagrass meadow (Zostera noltii Hornem.): application to the Thau lagoon (French Mediterranean coast). Ecol Model 161:213–238

    Article  CAS  Google Scholar 

  • Purkis S, Roelfsema C (2015) 11 Remote sensing of submerged aquatic vegetation and coral reefs. Remote Sens Wetlands Appl Adv 223

    Google Scholar 

  • Robbins BD, Bell SS (1994) Seagrass landscapes: a terrestrial approach to the marine subtidal environment. Trends Ecol Evol 9:301–304

    Article  CAS  PubMed  Google Scholar 

  • Roelfsema CM, Phinn SR, Udy N, Maxwell P (2009) An integrated field and remote sensing approach for mapping seagrass cover, Moretón Bay, Australia. J Spat Sci 54:45–62

    Article  Google Scholar 

  • Roelfsema CM, Phinn SR, Tracey D, Speirs J, Hewson M, Johansen K (2010) A web based toolkit for using remote sensing to map and monitor terrestrial, marine and atmospheric environments. http://www.gpem.uq.edu.au/brg-rstoolkit/

  • Roelfsema C, Kovacs EM, Saunders MI, Phinn S, Lyons M, Maxwell P (2013) Challenges of remote sensing for quantifying changes in large complex seagrass environments. Estuar Coast Shelf Sci 133:161–171

    Article  Google Scholar 

  • Roelfsema CM, Lyons M, Kovacs EM, Maxwell P, Saunders MI, Samper-Villarreal J, Phinn SR (2014) Multi-temporal mapping of seagrass cover, species and biomass: a semi-automated object based image analysis approach. Remote Sens Environ 150:172–187

    Article  Google Scholar 

  • Saunders MI, Leon J, Phinn SR, Callaghan DP, O’Brien KR, Roelfsema CM, Lovelock CE, Lyons MB, Mumby PJ (2013) Coastal retreat and improved water quality mitigate losses of seagrass from sea level rise. Glob Change Biol 19:2569–2583

    Article  Google Scholar 

  • Saunders MI, Leon JX, Callaghan DP, Roelfsema CM, Hamylton S, Brown CJ, Baldock T, Golshani A, Phinn SR, Lovelock CE, Hoegh-Guldberg O, Woodroffe CD, Mumby PJ (2014) Interdependency of tropical marine ecosystems in response to climate change. Nat Clim Change 4:724–729

    Article  Google Scholar 

  • Saunders MI, Bayraktarov E, Roelfsema Chris M, Leon Javier X, Samper-Villarreal J, Phinn Stuart R, Lovelock Catherine E , Mumby Peter J (2015) Spatial and temporal variability of seagrass at Lizard Island, Great Barrier Reef. Botanica Marina

    Google Scholar 

  • Sintes T, Marbà N, Duarte CM, Kendrick GA (2005) Nonlinear processes in seagrass colonisation explained by simple clonal growth rules. Oikos 108:165–175

    Article  Google Scholar 

  • Sintes T, Marbà N, Duarte C (2006) Modeling nonlinear seagrass clonal growth: Assessing the efficiency of space occupation across the seagrass flora. Estuaries Coasts 29:72–80

    Article  Google Scholar 

  • Stevens T, Connolly RM (2004) Testing the utility of abiotic surrogates for marine habitat mapping at scales relevant to management. Biol Cons 119:351–362

    Article  Google Scholar 

  • Turner M, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice. Springer, New York, USA

    Google Scholar 

  • van der Heide T, Smolders AJP, Rijkens BGA, van Nes EH, van Katwijk MM, Roelofs JGM (2008) Toxicity of reduced nitrogen in eelgrass (Zostera marina) is highly dependent on shoot density and pH. Oecologia 158:411–419

    Article  PubMed  Google Scholar 

  • van der Heide T, Bouma TJ, van Nes EH, van de Koppel J, Scheffer M, Roelofs JGM, van Katwijk MM, Smolders AJP (2010) Spatial self-organized patterning in seagrasses along a depth gradient of an intertidal ecosystem. Ecology 91:362–369

    Article  PubMed  Google Scholar 

  • Verhagen JHG, Nienhuis PH (1983) Simulation model of production, seasonal changes in biomass and distribution of eelgrass (Zostera marina) in Lake Grevelingen. Mar Ecol Prog Ser 10:187–195

    Article  Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJ, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL, Hughes AR (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci 106:12377–12381

    Article  PubMed  Google Scholar 

  • Wortmann J, Hearne JW, Adams JB (1997) A mathematical model of an estuarine seagrass. Ecol Model 98:137–149

    Article  Google Scholar 

  • Wu J (1999) Hierarchy and scaling: extrapolating information along a scaling ladder. Can J Remote Sens 25:367–380

    Article  Google Scholar 

  • Wu J, Jones B, Li H, Loucks OL (2006) Scaling and uncertainty analysis in ecology, Springer

    Google Scholar 

  • Wulder MA, Masek JG, Cohen WB, Loveland TR, Woodcock CE (2012) Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sens Environ 122:2–10

    Article  Google Scholar 

  • Young P, Kirkman H (1975) The seagrass communities of Moreton Bay, Queensland. Aquat Bot 1:191–202

    Article  Google Scholar 

  • Zimmerman RC (2006) Light and photosynthesis in seagrass meadows. In: Seagrasses: biology, ecology and conservation. Springer, Netherlands

    Google Scholar 

  • Zimmerman RC, Dekker A (2006) Aquatic optics: basic concepts for understanding how light affects seagrasses and makes them measurable from space. In: Seagrasses: biology, ecology and conservation. Springer, Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Phinn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phinn, S. et al. (2018). Mapping, Monitoring and Modelling Seagrass Using Remote Sensing Techniques. In: Larkum, A., Kendrick, G., Ralph, P. (eds) Seagrasses of Australia. Springer, Cham. https://doi.org/10.1007/978-3-319-71354-0_15

Download citation

Publish with us

Policies and ethics