Skip to main content

Time Dependency

  • Chapter
  • First Online:
The Double Constraint Inversion Methodology

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 380 Accesses

Abstract

We start in Sect. 4.1 with the specific storage coefficient and the specific yield, which occur in terms with a time derivative. Next, we deal with flow caused by time-dependent driving mechanisms like recharge and varying pumping well rates. In such cases, we can determine a series of time-dependent parameter estimates, from which the mean value and the standard deviation (the spread of the observation noise) can be determined. According to Bayesian theory on conditional probabilities, the uncertainty in a parameter’s mean value will decrease below the spread with increasing length of the time series. Section 4.2 presents the relevant Kalman filter equations, while Sect. 4.3 presents a comprehensive in-depth explanation. This section also presents calibration by the ensemble Kalman filter (EnKF) with hints how the double constraint methodology (DCM) could be applied to mitigate some disadvantages of the EnKF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aanonsen SI, Naevdal G, Oliver DS, Reynolds AC, Vallès B (2009) The ensemble Kalman filter in reservoir engineering: a review. SPE Journal 14(03). doi:https://doi.org/10.2118/117274-PA

  • Agbalaka CC, Oliver DS (2011) Joint updating of petrophysical properties and discrete facies variables from assimilating production data using the EnKF. SPE Journal 118916:318–330

    Article  Google Scholar 

  • Anderson BDO, Moore JB (1979) Optimal filtering. Prentice Hall, New Jersey

    Google Scholar 

  • Bell S (2001) A beginner’s guide to uncertainty of measurement. Centre for Basic, Thermal and Length Metrology, National Physical Laboratory, ISSN 1368-6550, Teddington, Middlesex, U.K. https://www.wmo.int/pages/prog/gcos/documents/gruanmanuals/UK_NPL/mgpg11.pdf

  • Brouwer GK, Fokker PA, Wilschut F, Zijl W (2008) A direct inverse model to determine permeability fields from pressure and flow rate measurements. Math Geosc 40(8):907–920

    Article  Google Scholar 

  • Chen Y, Zhang D (2006) Data assimilation for transient flow in geologic formations via ensemble Kalman Filter. Adv Water Resour 29:1107–1122

    Article  Google Scholar 

  • De Smedt F, Zijl W, El-Rawy M (2017) A double constraint method for analysis of a pumping test. Submitted

    Google Scholar 

  • El Serafy GY, Mynett AE (2008) Improving the operational forecasting system of the stratified flow in Osaka Bay using an ensemble Kalman filter–based steady state Kalman filter. Water Resour Res 44(6):W06416. https://doi.org/10.1029/2006WR005412

    Article  Google Scholar 

  • Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(C5):10143–10162

    Article  Google Scholar 

  • Gavalas GR, Shah PC, Seinfeld JH (1976) Reservoir history matching by Bayesian estimation. Soc Pet Eng 261:337–350

    Article  Google Scholar 

  • Hamill TM, Withaker JS, Snyder C (2001) Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon Weather Rev 129:2776–2790

    Article  Google Scholar 

  • Heemink A (1990) Identification of wind stress on shallow water surfaces by optimal smoothing. Stochast Hydrol Hydraulics 4:105–119

    Article  Google Scholar 

  • Houtekamer PL, Mitchell HL (1998) Data assimilation using an ensemble Kalman filter technique. Mon Weather Rev 126:796–811

    Article  Google Scholar 

  • Huysmans M, Dassargues A (2009) Application of multiple-point geostatistics on modelling groundwater flow and transport in a cross-bedded aquifer (Belgium). Hydrogeol J 17(8):1901–1911

    Article  Google Scholar 

  • Huysmans M, Dassargues A (2011) Direct multiple-point geostatistical simulation of edge properties for modeling thin irregularly shaped surfaces. Math Geosci 43(5):521–536

    Article  Google Scholar 

  • Huysmans M, Peeters L, Moermans G, Dassargues A (2008) Relating small-scale sedimentary structures and permeability in a cross-bedded aquifer. J Hydrol 361(1–2):41–51

    Article  Google Scholar 

  • Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Jazwinski AH (1970) Stochastic processes and filtering theory. Academic Press Inc, Cambridge, UK

    Google Scholar 

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME. J Basic Eng 82:35–45

    Article  Google Scholar 

  • Lee KB, Jo GM, Choe J (2011) Improvement of ensemble Kalman Filter for improper initial ensemble. Geosyst Eng 14(2):79–84

    Article  Google Scholar 

  • Maybeck PS (1979) Stochastic model estimation, and control, vol 1. Academic Press Inc, Cambridge, UK

    Google Scholar 

  • Naevdal G, Mannseth T, Vefring EH (2002) Near-well reservoir monitoring through ensemble Kalman Filter. Paper SPE 75235 (9 pages), SPE/DOE Improved oil recovery symposium, 13–17 April 2002, Tulsa, Oklahoma, USA

    Google Scholar 

  • Sarma P, Chen WH (2009) Generalization of the ensemble Kalman Filter using kernels for non-Gaussian random fields. SPE 119177

    Google Scholar 

  • Verlaan M, Zijderveld A, de Vries H, Kroos J (2005) Operational storm surge forecasting in the Netherlands: developments in the last decade. Phil Trans R Soc A 363:1441–1453

    Article  Google Scholar 

  • Welch G, Bishop G (2006) An introduction to the Kalman Filter. Technical Report 95-041, Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3175. http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf

  • Zhang Y, Oliver D (2011) Evaluation and error analysis: Kalman gain regularization versus covariance regularization. Comput Geosci 15(3):1–20

    Article  Google Scholar 

  • Zijl F, Samihar J, Verlaan M (2015) Application of data assimilation for improved operational water level forecasting on the northwest European shelf and North Sea. Ocean Dyn 65(12):1699–1716. https://doi.org/10.1007/s10236-015-0898-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter Zijl .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zijl, W., De Smedt, F., El-Rawy, M., Batelaan, O. (2018). Time Dependency. In: The Double Constraint Inversion Methodology. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-71342-7_4

Download citation

Publish with us

Policies and ethics