Skip to main content

The Pointwise Double Constraint Methodology

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

This chapter deals with the basic elements of the double constraint methodology (DCM). Since the DCM is an imaging method, while most parameter estimation methods are calibration methods, the difference is introduced in Sect. 3.1 and worked out in much greater depths in Sect. 3.9. Section 3.2 introduces the DCM in its most simple, intuitive form. To avoid presentation of three times the same equation for the three conductivity components in anisotropic media, we introduce the “voxel notation” in Sect. 3.3. Sections 3.4 and 3.5 present the theoretical justifications for the “intuitive DCM” presented in Sect. 3.2, while Sect. 3.6 discusses convergence and termination of the iterations. Section 3.7 presents some different approaches to handling anisotropy. Since the DCM is based on two models—the flux model and the head model—the rules for posing the correct boundary conditions for the two models are dealt with in Sect. 3.8.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aziz K, Settari A (1979) Petroleum reservoir simulation. Applied Science Publishers Ltd, London

    Google Scholar 

  • Bossavit A (1998a) Computational Electromagnetism. Academic Press, Boston

    Google Scholar 

  • Bossavit A (1998b) Computational electromagnetism and geometry. J Jpn Soc Appl Electromagn Mech 6:17–28, 114–123, 233–240, 318–326

    Google Scholar 

  • Bossavit A (1999) Computational electromagnetism and geometry. J Jpn Soc Appl Electromagn Mech 7:150–159, 249–301, 401–408

    Google Scholar 

  • Bossavit A (2000) Computational electromagnetism and geometry. J Jpn Soc Appl Electromagn Mech 8:102–109, 203–209, 372–377

    Google Scholar 

  • Bossavit A (2005) Disctretization of electromagnetic problems: the “generalized finite difference approach”. In: Ciarlet PG (ed) Handbook of numerical analysis, vol XIII. Elsevier, North Holland, Amsterdam

    Google Scholar 

  • Brouwer GK, Fokker PA, Wilschut F, Zijl W (2008) A direct inverse model to determine permeability fields from pressure and flow rate measurements. Math Geosci 40(8):907–920

    Article  Google Scholar 

  • Butkov E (1973) Mathematical Physics. Addison Wesley Publishing Company, Reading

    Google Scholar 

  • Chavent G (1987) On the uniqueness of local minima for general abstract non-linear least square problems. [Research report] RR-0645 <inria-00075908>. https://hal.inria.fr/inria-00075908

  • Chen Y, Zhang D (2006) Data assimilation for transient flow in geologic formations via ensemble Kalman Filter. Adv Water Resour 29:1107–1122

    Article  Google Scholar 

  • Datta-Gupta A, Yoon S, Barman I, Vasco DW (1998) Streamline-based production data integration into high resolution reservoir models. J Pet Technol 50(12):72–76

    Google Scholar 

  • Diersch HJG (2005) FEFLOW-Finite element subsurface flow and transport simulation system. WASY GmbH, Berlin, Germany

    Google Scholar 

  • El-Rawy M (2013) Calibration of hydraulic conductivities in groundwater flow models using the double constraint method and the Kalman filter. Ph.D. thesis, Vrije Universiteit Brussel, Brussels, Belgium

    Google Scholar 

  • El-Rawy M, Batelaan O, Zijl W (2015) Simple hydraulic conductivity estimation by the Kalman filtered double constraint method. Ground Water 53(3):401–413. https://doi.org/10.1111/gwat.12217

    Article  Google Scholar 

  • Frankel T (2004) The geometry of physics, an introduction. Cambridge University Press, New York

    Google Scholar 

  • Fry B, Wexler A (1995) US Patent 4,539,640, 3 Sept 1995

    Google Scholar 

  • Harbaugh AW (2005) MODFLOW-2005, The US Geological Survey modular ground-water model, the ground-water flow process, techniques and methods. US Geological Survey, Reston, VA, p 6-A16

    Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The US Geological Survey modular ground-water model, user guide to modularization concepts and the ground-water flow process. US Geological Survey Open-File Report 00–92. Reston, Virginia: USGS, p 121

    Google Scholar 

  • Huisman L (1950) Resistance of clay-layer Amsterdam dune water catchment area (in Dutch). Amsterdam Water Supply Report

    Google Scholar 

  • Kaasschieter EF (1990) Preconditioned conjugate gradients and mixed-hybrid finite elements for the solution of potential flow problems. Ph.D. thesis, Delft University of Technology, Delft, Netherlands

    Google Scholar 

  • Kaasschieter EF, Huijben SJM (1992) Mixed-hybrid finite elements and streamline computation for the potential flow problem. Numer Methods Partial Differ Equ 8:221–266

    Article  Google Scholar 

  • Kohn RV, McKenney A (1990) Numerical implementation of a variational method for electrical impedance tomography. Inverse Probl 6:389–414

    Article  Google Scholar 

  • Kohn RV, Vogelius M (1987) Relaxation of a variational method for impedance computed tomography. Comm Pure Appl Math 40:745–777

    Article  Google Scholar 

  • MATLAB (2017) The MathWorks, Inc., Natick, Massachusetts, USA

    Google Scholar 

  • Mohammed GA (2009) Modeling groundwater-surface water interaction and development of an inverse groundwater modeling methodology. Ph.D. thesis, Vrije Universiteit Brussel, Brussels, Belgium. http://twws6.vub.ac.be/hydr/download/GetachewAdemMohammed.pdf

  • Mohammed GA, Zijl W, Batelaan O, De Smedt F (2009a) Comparison of two mathematical models for 3D groundwater flow: block-centered heads and edge-based stream functions. Trans Porous Media 79(3):469–485

    Article  Google Scholar 

  • Mohammed GA, Zijl W, Batelaan O, De Smedt F (2009b) 3D stream function based Hydraulic Impedance Tomography. Presented at EGU general assembly 2009, Vienna, 19–24 April 2009: 5631, session HS3.5/A108, EGU 2009, vol 11 (2009). Geophysical research abstracts, vol 11, p 5631, European Geophysical Union (2009). http://www.google.com/search?q=egu+2009+5631+site:meetingorganizer.copernicus.org

  • Morse PM, Feshbach H (1953) Methods of theoretical physics. McGraw-Hill, New York

    Google Scholar 

  • Naevdal G, Mannseth T, Vefring EH (2002) Near-well reservoir monitoring through Ensemble Kalman Filter. Paper SPE 75235 (9 pages), SPE/DOE improved oil recovery symposium, Tulsa, Oklahoma, 13–17 April 2002

    Google Scholar 

  • Narasimhan TN (2010) The discrete and the continuous: which comes first? Curr Sci 98(8):1003–1005

    Google Scholar 

  • Nawalany M, Zijl W (2010) The velocity oriented approach revisited. XXXVIII IAH congress, groundwater quality sustainability, extended abstract 472, topic 5: data processing in hydrogeology, 5.2: groundwater flow and solute transport modelling, Krakow, Poland, 12–17 Sept 2010. Biuletyn Państwowego Instytutu Geologicznego 441:113–122 (Geol Bull Pol Geol Inst 441:113–122)

    Google Scholar 

  • Nelson RW (1960) In-place measurement of permeability in heterogeneous porous media 1: theory of a proposed method. J Geophys Res 65(6):1753–1758

    Article  Google Scholar 

  • Nelson RW (1961) In-place measurement of permeability in heterogeneous porous media 2: experimental and computational considerations. J Geophys Res 66(8):2469–2478

    Article  Google Scholar 

  • Nelson RW (1962) Conditions for determining areal permeability distribution by calculation. Soc Pet Eng J 2(3):223–224. https://doi.org/10.2118/371-PA

  • Nelson RW (1968) In-place determination of permeability distribution for heterogeneous porous media through analysis of energy dissipation. Soc Pet Eng J 8(1):33–42 http://www.onepetro.org/mslib/servlet/onepetropreview?id=00001554

  • Olsthoorn TN (1998) Groundwater modelling: calibration and the use of spreadsheets. Ph.D. thesis, Delft University of Technology, Delft, Netherlands

    Google Scholar 

  • Peaceman DW (1977) Fundamentals of numerical reservoir simulation. Elsevier Science, Amsterdam

    Google Scholar 

  • Shinbrod M (1973) Lectures on fluid mechanics. Gordon and Breach, New York

    Google Scholar 

  • Tamburi A, Roeper U, Wexler A (1988) An application of impedance-computed tomography to subsurface imaging of pollution plumes. In: Collins AG, Johnson AI (eds) Ground-water contamination: field methods, ASTM Special Technical Publication 963, American Society for Testing and Materials, p 86–100

    Google Scholar 

  • Trykozko A, Brouwer GK, Zijl W (2008) Downscaling: a complement to homogenization. Int J Num Anal Model 5:157–170

    Google Scholar 

  • Trykozko A, Mohammed GA, Zijl W (2009) Downscaling: the inverse of upscaling. In: Conference on mathematical and computational issues in the geosciences, SIAM GS 2009, Leipzig, 15–18 June 2009

    Google Scholar 

  • Trykozko A, Zijl W, Bossavit A (2001) Nodal and mixed finite elements for the numerical homogenization of 3D permeability. Comput Geosci 5:61–64

    Article  Google Scholar 

  • Van Leeuwen VCI (2005) A Matlab implementation of the edge-based face element method for forward and inverse modelling in the near-well region. M.Sc. thesis, Mathematical Institute, Utrecht University, Utrecht

    Google Scholar 

  • Webster JG (1990) Electrical impedance tomography. Adam Hilger, Bristol

    Google Scholar 

  • Wexler A (1988) Electrical impedivity imaging in two and three dimensions. Clin Phys Physiol Meas 9(Suppl A):29–33

    Google Scholar 

  • Wexler A, Fry B, Neuman MR (1985) Impedivity computed tomography algorithm and system. Appl Opt 24(23):3985–3992

    Article  Google Scholar 

  • Yeh WWG (1986) Review of parameter identification procedures in groundwater hydrology: the inverse problem. Water Resour Res 22(2):95–108

    Article  Google Scholar 

  • Yorkey TJ, Webster JG (1987) A comparison of impedivity topographic reconstruction algorithms. Clin Phys Physiol Meas 8:55–62

    Article  Google Scholar 

  • Yorkey TJ, Webster JG, Tompkins WJ (1987) Comparing reconstruction algorithms for electrical impedance tomography. IEEE Trans Biomed Eng 34:843–852

    Article  Google Scholar 

  • Zijl W (2004) A direct method for the identification of the permeability field based on flux assimilation by a discrete analog of Darcy’s law. Transp Porous Med 56:87–112

    Article  Google Scholar 

  • Zijl W (2005a) Face-centered and volume-centered discrete analogs of the exterior differential equations governing porous medium flow I: theory. Transp Porous Med 60:109–122

    Article  Google Scholar 

  • Zijl W (2005b) Face-centered and volume-centered discrete analogs of the exterior differential equations governing porous medium flow II: examples. Transp Porous Med 60:123–133

    Article  Google Scholar 

  • Zijl W (2007) Forward and inverse modeling of near-well flow using discrete edge-based vector potentials. Transp Porous Med 67:115–133

    Article  Google Scholar 

  • Zijl W, Mohammed GA, Batelaan O, De Smedt F (2010) Constraining methods for direct inverse modeling. XVIII international conference on water resources, CMWR, CIMNE, Barcelona. http://congress.cimne.com/cmwr2010/Proceedings/docs/p62.pdf

  • Zijl W, Nawalany M (2004) The edge-based face element method for 3D-stream function and flux calculations in porous media flow. Transp Porous Med 55:361–382

    Article  Google Scholar 

  • Zijl W, Trykozko A (2001) Numerical homogenization of the absolute permeability using the conformal-nodal and mixed-hybrid finite element method. Transp Porous Med 44:33–62

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter Zijl .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zijl, W., De Smedt, F., El-Rawy, M., Batelaan, O. (2018). The Pointwise Double Constraint Methodology. In: The Double Constraint Inversion Methodology. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-71342-7_3

Download citation

Publish with us

Policies and ethics