Skip to main content

Foundations of Forward and Inverse Groundwater Flow Models

  • Chapter
  • First Online:
The Double Constraint Inversion Methodology

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

This chapter deals with the basic equation governing groundwater flow. In Sect. 2.1, the equations are presented in their full four-dimensional form (three spatial dimensions + time) with emphasis on the parameters. Section 2.2 introduces Calderón’s approach to determination of the spatially heterogeneous hydraulic conductivity field. To avoid negative hydraulic conductivities in the double constraint methodology (DCM), this approach is based on the square root of the hydraulic conductivity (sqrt-conductivity α). Section 2.3 introduces Stefanescu’s α-center method for parameter estimation, while Sect. 2.4 analyzes Calderón’s approach in more depth using inspiration from Stefanesco’s method. Although this chapter sets the scene for the real subject matter of this book—the double constraint methodology (DCM)—its reading may be skipped by readers who want to go directly to the DCM treated in Chap. 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barber D, Brown B (1984) Applied potential tomography. J Phys E: Sci Instrum 17:723–733

    Article  Google Scholar 

  • Barber DC, Brown BH (1986) Recent developments in applied potential tomography-APT. In: Bacharach SL (ed) Information processing in medical imaging. Martinus Nijhoff, Amsterdam, pp 106–121

    Chapter  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous materials. American Elsevier Publ. Co., New York

    Google Scholar 

  • Borcea L (2002) Electrical impedance tomography. Inverse Prob 18:99–136

    Article  Google Scholar 

  • Borcea L (2003) Addendum to electrical impedance tomography. Inverse Prob 19:9978

    Google Scholar 

  • Borcea L, Gray GA, Zhang Y (2003) Variationally constrained numerical solution of electrical impedance tomography. Inverse Prob 19:1159–1184. PII: S0266-5611(03)57791-7

    Google Scholar 

  • Bresciani E, Gleeson T, Goderniaux P, de Dreuzy JR, Werner AD, Wörman A, Zijl W, Batelaan O (2016) Groundwater flow systems theory: research challenges beyond the specified-head top boundary condition. Hydrogeol J 24:1087–1090. https://doi.org/10.1007/s10040-016-1397-8

    Article  Google Scholar 

  • Brown RM (1996) Global uniqueness in the impedance imaging problem for less regular conductivities. SIAM J Math Anal 27:1049–1056

    Article  Google Scholar 

  • Brown RM, Uhlmann G (1997) Uniqueness in the inverse conductivity problem for non-smooth conductivities in two dimensions. Commun Part Diff Eqns 22:1009–1027

    Article  Google Scholar 

  • Bukhgeim AL, Uhlmann G (2002) Recovering a potential from partial Cauchy data. Comm Partial Diff Eqns 27:653–668

    Article  Google Scholar 

  • Butkov E (1973) Mathematical physics. Addison Wesley Publ. Comp., Reading

    Google Scholar 

  • Calderón AP (1980) On an inverse boundary value problem. Seminar on numerical analysis and its applications to continuum physics (Rio de Janeiro, 1980). Soc Brasil Mat, 65–73, Rio de Janeiro. Also see the reprint: Calderón AP (2006) On an inverse boundary value problem. Comput Appl Math 25(2–3):133–138

    Google Scholar 

  • Chavent G, Jaffré J (1986) Mathematical models and finite elements for reservoir simulation. Elsevier, North-Holland, Amsterdam

    Google Scholar 

  • Chen Z, Zhang Y (2009) Well flow models for various numerical methods. Int J Num Anal Mod 6(3):375–388

    Google Scholar 

  • Cheney M, Isaacson D, Newell JC (1999) Electrical impedance tomography. SIAM Rev 41:85–101

    Article  Google Scholar 

  • Duvaut G, Lions JL (1976) Inequalities in mechanics and physics. Springer, Berlin. ISBN 978-3-642-66167-9 (Print) 978-3-642-66165-5 (Online)

    Google Scholar 

  • El-Rawy M, Batelaan O, Zijl W (2015) Simple hydraulic conductivity estimation by the Kalman filtered double constraint method. Groundwater 53(3):401–413. https://doi.org/10.1111/gwat.12217

  • El-Rawy M, De Smedt F, Batelaan O, Schneidewind U, Huysmans M, Zijl W (2016) Hydrodynamics of porous formations: Simple indices for calibration and identification of spatio-temporal scales. Mar Petrol Geol 78:690–700. https://doi.org/10.1016/j.marpetgeo.2016.08.018

  • De Smedt F, Zijl W (2018) Two- and three-dimensional flow of groundwater. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Holder DS (2005) Electrical impedance tomography. IOP Publishing, Bristol

    Google Scholar 

  • Kenig C, Sjöstrand J, Uhlmann G (2007) The Calderón problem with partial data. Ann Math 165:567–591

    Article  Google Scholar 

  • Morse PM, Feshbach H (1953) Methods of theoretical physics. McGraw-Hill, New York

    Google Scholar 

  • Nachman AI (1996) Global uniqueness for a two-dimensional inverse boundary problem. Ann Math 143:71–96

    Article  Google Scholar 

  • Olmstead WE (1968) Force relationships and integral representations for the viscous hydrodynamical equations. Arch Ration Mech Anal 31:380–390

    Article  Google Scholar 

  • Peaceman DW (1977a) Interpretation of well-block pressures in numerical reservoir simulation. SPE 6893, 52nd annual fall technical conference and exhibition, Denver

    Google Scholar 

  • Peaceman DW (June 1983) Interpretation of well-block pressures in numerical reservoir simulation with non-square grid blocks and anisotropic permeability. Soc Pet Eng J: 531–543

    Google Scholar 

  • Peaceman DW (Feb 1991) Presentation of a horizontal well in numerical reservoir simulation. SPE 21217, presented at 11th SPE symposium on reservoir simulation in Ananheim, California, 17–20

    Google Scholar 

  • Salo M (2008) Calderón problem. Lecture notes, Spring 2008 Mikko Salo, Department of Mathematics and Statistics, University of Helsinki. http://users.jyu.fi/~salomi/lecturenotes/calderon_lectures.pdf

  • Siltanen S, Mueller JL, Isaacson D (2000) An implementation of the reconstruction algorithm of A. Nachman for the 2-D inverse conductivity problem. Inverse Prob 16:681–699

    Article  Google Scholar 

  • Stefanescu SS (1950) Theoretical models of heterogeneous media for electrical prospecting methods with direct currents (in French). Comitetul Geologic, Studii Technice si Economice, Seria D, Nr. 2, Studii Technice si Economice, Imprimeria National, Bucuresti: 51–71

    Google Scholar 

  • Sylvester J, Uhlmann G (1987) A global uniqueness theorem for an inverse boundary value problem. Ann Math 125:153–169

    Article  Google Scholar 

  • Tóth J (2009) Gravitational systems of groundwater flow. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Trykozko A, Zijl W, Bossavit A (2001) Nodal and mixed finite elements for the numerical homogenization of 3D permeability. Comput Geosci 5:61–64

    Article  Google Scholar 

  • Uhlmann G (2003) Electrical impedance tomography and Calderon’s problem. Med Eng Phys 25:79–90 https://www.math.washington.edu/~gunther/publications/Papers/calderoniprevised.pdf

  • Uhlmann G (2009) Electrical impedance tomography and Calderón’s problem

    Google Scholar 

  • Inverse Problems 25:123011 (39 p) doi:https://doi.org/10.1088/0266-5611/25/12/123011

  • http://www.dim.uchile.cl/~axosses/calderoniprevised.pdf

  • Yeh WWG (1986) Review of parameter identification procedures in groundwater hydrology: The inverse problem. Water Resour Res 22(2):95–108

    Google Scholar 

  • Zijl W, Nawalany M (1993) Natural groundwater flow. Lewis Publishers, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter Zijl .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zijl, W., De Smedt, F., El-Rawy, M., Batelaan, O. (2018). Foundations of Forward and Inverse Groundwater Flow Models. In: The Double Constraint Inversion Methodology. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-71342-7_2

Download citation

Publish with us

Policies and ethics