Isometric and Isomorphic Consequences

  • Vladimir Kadets
  • Miguel Martín
  • Javier Merí
  • Antonio Pérez
Part of the Lecture Notes in Mathematics book series (LNM, volume 2205)


Our goal here is to present consequences on the Banach spaces X and Y of the fact that there is \(G\in \mathcal {L}(X,Y)\) which is a spear operator, is lush, or has the aDP.


  1. 9.
    A. Avilés, V. Kadets, M. Martín, J. Merí, V. Shepelska, Slicely countably determined Banach spaces. Trans. Am. Math. Soc. 362, 4871–4900 (2010)Google Scholar
  2. 34.
    R. Deville, G. Godefroy, V. Zizler, Smoothness and Renormings in Banach Spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64 (Longman Scientific and Technical, London, 1993)Google Scholar
  3. 66.
    V. Kadets. M. Martín, J. Merí, R. Payá, Convexity and smoothness of Banach spaces with numerical index one. Ill. J. Math. 53, 163–182 (2009)Google Scholar
  4. 82.
    J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I: Sequence Spaces (Springer, Berlin, 1977)CrossRefGoogle Scholar
  5. 115.
    M. Smith, Some examples concerning rotundity in Banach spaces. Math. Ann. 233, 155–161 (1978)MathSciNetCrossRefGoogle Scholar
  6. 118.
    D. Van Duslt, Characterizations of Banach Spaces Not Containing 1. CWI Tract, vol. 59 (Stichting Mathematisch Centrum/Centrum voor Wiskunde en Informatica, Amsterdam, 1989)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vladimir Kadets
    • 1
  • Miguel Martín
    • 2
  • Javier Merí
    • 2
  • Antonio Pérez
    • 3
  1. 1.School of Mathematics and Computer ScienceV. N. Karazin Kharkiv National UniversityKharkivUkraine
  2. 2.Departamento de Análisis MatemáticoUniversidad de GranadaGranadaSpain
  3. 3.Departamento de MatemáticasUniversidad de MurciaMurciaSpain

Personalised recommendations