Skip to main content

Hormones Rule the Roost: Hormonal Influences on Sex Ratio Adjustment in Birds and Mammals

  • Chapter
  • First Online:
Choosing Sexes

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

In previous chapters, I have provided evidence that both birds and mammals skew offspring sex ratios in response to environmental and social conditions and that, in each group, there are several mechanistic targets at which such manipulation of offspring sex may occur. What we still don’t know, however, is how those environmental and social conditions are transduced into physiological signals that will ultimately influence the process of sex determination. Hormones are excellent candidates for this job because they are, by nature, transducers of environmental information that trigger appropriate physiological responses. The sex and stress steroids, in particular, emerge in both birds and mammals as likely mediators of sex ratio adjustment. In this chapter, I discuss the roles of both stress and sex steroids in mammalian and avian sex ratio adjustment and also introduce some additional hormones, such as leptin and ghrelin, which have gone unstudied as mediators of sex ratio adjustment in these systems.

In view of the apparent lack of genetic variance in the sex ratio in many species, a hormonal mechanism mediated by environmental factors provides a plausible explanation of many trends

Clutton-Brock and Iason (1986)

The purpose of this note is to persuade endocrinologists that mammalian sex ratios merit their attention

James (2008)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal SK, Vogel K, Weitsman SR, Magoffin DA (1999) Leptin antagonizes the insulin-like growth factor-I augmentation of steroidogenesis in granulosa and theca cells of the human ovary. J Clin Endocrinol Metab 84(3):1072–1076

    CAS  PubMed  Google Scholar 

  • Armstrong D, Baxter G, Hogg C, Woad K (2002) Insulin-like growth factor (IGF) system in the oocyte and somatic cells of bovine preantral follicles. Reproduction 123(6):789–797

    Article  CAS  PubMed  Google Scholar 

  • Aslam MA, Groothuis TG, Smits MA, Woelders H (2014) Effect of corticosterone and hen body mass on primary sex ratio in laying hen (Gallus gallus), using unincubated eggs. Biol Reprod 90(4):76, 71–79

    Google Scholar 

  • Bae J, Lynch CD, Kim S, Sundaram R, Sapra KJ, Louis GMB (2017) Preconception stress and the secondary sex ratio in a population-based preconception cohort. Fertil Steril 107(3):714–722

    Article  PubMed  Google Scholar 

  • Barash IA, Cheung CC, Weigle DS, Ren H, Kabigting EB, Kuijper JL, Clifton DK, Steiner RA (1996) Leptin is a metabolic signal to the reproductive system. Endocrinology 137(7):3144–3147

    Article  CAS  PubMed  Google Scholar 

  • Barreiro M, Tena-Sempere M (2004) Ghrelin and reproduction: a novel signal linking energy status and fertility? Mol Cell Endocrinol 226:1):1–1):9

    Article  PubMed  CAS  Google Scholar 

  • Bedford J, Kim H (1993) Cumulus oophorus as a sperm sequestering device, in vivo. J Exp Zool A Ecol Genet Physiol 265(3):321–328

    CAS  Google Scholar 

  • Bentz AB, Navara KJ, Siefferman L (2013) Phenotypic plasticity in response to breeding density in tree swallows: an adaptive maternal effect? Horm Behav 64(4):729–736

    Article  CAS  PubMed  Google Scholar 

  • Bentz AB, Becker DJ, Navara KJ (2016a) Evolutionary implications of interspecific variation in a maternal effect: a meta-analysis of yolk testosterone response to competition. R Soc Open Sci 3(11):160499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bentz AB, Sirman AE, Wada H, Navara KJ, Hood WR (2016b) Relationship between maternal environment and DNA methylation patterns of estrogen receptor alpha in wild Eastern Bluebird (Sialia sialis) nestlings: a pilot study. Ecol Evol 6(14):4741–4752

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonier F, Martin PR, Wingfield JC (2007) Maternal corticosteroids influence primary offspring sex ratio in a free-ranging passerine bird. Behav Ecol 18(6):1045–1050

    Article  Google Scholar 

  • Burley N (1981) Sex ratio manipulation and selection for attractiveness. Science 211(4483):721–722

    Article  CAS  PubMed  Google Scholar 

  • Cameron EZ, Lemons PR, Bateman PW, Bennett NC (2008) Experimental alteration of litter sex ratios in a mammal. Proc R Soc Lond B Biol Sci 275(1632):323–327

    Article  Google Scholar 

  • Can A, Semiz O (2000) Diethylstilbestrol (DES)-induced cell cycle delay and meiotic spindle disruption in mouse oocytes during in-vitro maturation. Mol Hum Reprod 6(2):154–162

    Article  CAS  PubMed  Google Scholar 

  • Cassy S, Metayer S, Crochet S, Rideau N, Collin A, Tesseraud S (2004) Leptin receptor in the chicken ovary: potential involvement in ovarian dysfunction of ad libitum-fed broiler breeder hens. Reprod Biol Endocrinol 2(1):72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chason RJ, McLain AC, Sundaram R, Chen Z, Segars JH, Pyper C, Louis GMB (2012) Preconception stress and the secondary sex ratio: a prospective cohort study. Fertil Steril 98(4):937–941

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark MM, Galef BG (1995) Prenatal influences on reproductive life history strategies. Trends Ecol Evol 10(4):151–153

    Article  CAS  PubMed  Google Scholar 

  • Clemmons DR (2004) Role of insulin-like growth factor iin maintaining normal glucose homeostasis. Horm Res 62(Suppl 1):77–82

    CAS  PubMed  Google Scholar 

  • Clutton-Brock TH, Iason GR (1986) Sex ratio variation in mammals. Q Rev Biol 61(3):339–374

    Article  CAS  PubMed  Google Scholar 

  • Cooper TG, Hing-Heiyeung C, Nashan D, Nieschlag E (1988) Epididymal markers in human infertility. J Androl 9(2):91–101

    Article  CAS  PubMed  Google Scholar 

  • Correa SM, Adkins-Regan E, Johnson PA (2005) High progesterone during avian meiosis biases sex ratios toward females. Biol Lett 1(2):215–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crisman RO, McDonald LE, Thompson FN (1980) Effects of progesterone or estradiol on uterine tubal transport of ova in the cow. Theriogenology 13(2):141–154

    Article  CAS  PubMed  Google Scholar 

  • Denbow DM, Meade S, Robertson A, McMurtry JP, Richards M, Ashwell C (2000) Leptin-induced decrease in food intake in chickens. Physiol Behav 69(3):359–362

    Article  CAS  PubMed  Google Scholar 

  • Diez C, Bermejo-Alvarez P, Trigal B, Caamano JN, Munoz M, Molina I, Gutierrez-Adan A, Carrocera S, Martin D, Gomez E (2009) Changes in testosterone or temperature during the in vitro oocyte culture do not alter the sex ratio of bovine embryos. J Exp Zool A Ecol Genet Physiol 311(6):448

    Article  PubMed  CAS  Google Scholar 

  • Dloniak S, French JA, Holekamp K (2006) Rank-related maternal effects of androgens on behaviour in wild spotted hyaenas. Nature 440(7088):1190–1193

    Article  CAS  PubMed  Google Scholar 

  • Doherty AS, Temeles GL, Schultz RM (1994) Temporal pattern of IGF-I expression during mouse preimplantation embryogenesis. Mol Reprod Dev 37(1):21–26

    Article  CAS  PubMed  Google Scholar 

  • Drake AJ, Walker BR, Seckl JR (2005) Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am J Phys Regul Integr Comp Phys 288(1):R34–R38

    CAS  Google Scholar 

  • Dunaif A (1997) Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev 18(6):774–800

    CAS  PubMed  Google Scholar 

  • Emadi S, Rezaei A, Bolourchi M, Hovareshti P, Akbarinejad V (2014) Administration of estradiol benzoate before insemination could skew secondary sex ratio toward males in Holstein dairy cows. Domest Anim Endocrinol 48:110–118

    Article  CAS  PubMed  Google Scholar 

  • Etches R, Cunningham F (1976) The effect of pregnenolone, progesterone, deoxycorticosterone or cortigosterone on the time of ovulation and oviposition in the hen. Br Poult Sci 17(6):637–642

    Article  CAS  PubMed  Google Scholar 

  • French JA, Smith AS, Birnie AK (2010) Maternal gestational androgen levels in female marmosets (Callithrix geoffroyi) vary across trimesters but do not vary with the sex ratio of litters. Gen Comp Endocrinol 165(2):309–314

    Article  CAS  PubMed  Google Scholar 

  • Gam A, Navara K (2016) Endogenous corticosterone elevations five hours prior to ovulation do not influence offspring sex ratios in Zebra Finches. Avian Biol Res 9(3):131–138

    Article  Google Scholar 

  • Gam AE, Mendonça MT, Navara KJ (2011) Acute corticosterone treatment prior to ovulation biases offspring sex ratios towards males in zebra finches Taeniopygia guttata. J Avian Biol 42(3):253–258

    Article  Google Scholar 

  • García-Herreros M, Bermejo-Álvarez P, Rizos D, Gutiérrez-Adán A, Fahey AG, Lonergan P (2010) Intrafollicular testosterone concentration and sex ratio in individually cultured bovine embryos. Reprod Fertil Dev 22(3):533–538

    Article  PubMed  Google Scholar 

  • Gaytan F, Barreiro ML, Chopin LK, Herington AC, Morales C, Pinilla L, Casanueva FF, Aguilar E, Dieguez C, Tena-Sempere M (2003) Immunolocalization of ghrelin and its functional receptor, the type 1a growth hormone secretagogue receptor, in the cyclic human ovary. J Clin Endocrinol Metab 88(2):879–887

    Article  CAS  PubMed  Google Scholar 

  • Geiringer E (1961) Effect of ACTH on Sex Ratio of the Albino Rat.∗. Proc Soc Exp Biol Med 106(4):752–754

    Article  CAS  PubMed  Google Scholar 

  • Gharagozlou F, Youssefi R, Vojgani M, Akbarinejad V, Rafiee G (2016) Androgen receptor blockade using flutamide skewed sex ratio of litters in mice. Vet Res Forum 7(2):169

    Google Scholar 

  • Giesy JP, Feyk LA, Jones PD, Kannan K, Sanderson T (2003) Review of the effects of endocrine-disrupting chemicals in birds. Pure Appl Chem 75(11–12):2287–2303

    CAS  Google Scholar 

  • Gil D, Graves J, Hazon N, Wells A (1999) Male attractiveness and differential testosterone investment in zebra finch eggs. Science 286(5437):126–128

    Article  CAS  PubMed  Google Scholar 

  • Goerlich VC, Dijkstra C, Schaafsma SM, Groothuis TG (2009) Testosterone has a long-term effect on primary sex ratio of first eggs in pigeons—in search of a mechanism. Gen Comp Endocrinol 163(1):184–192

    Article  CAS  PubMed  Google Scholar 

  • González RR, Caballero-Campo P, Jasper M, Mercader A, Devoto L, Pellicer A, Simon C (2000) Leptin and leptin receptor are expressed in the human endometrium and endometrial leptin secretion is regulated by the human blastocyst. J Clin Endocrinol Metab 85(12):4883–4888

    PubMed  Google Scholar 

  • Grant VJ (1994) Maternal dominance and the conception of sons. Br J Med Psychol 67(4):343–351

    Article  PubMed  Google Scholar 

  • Grant VJ (2007) Could maternal testosterone levels govern mammalian sex ratio deviations? J Theor Biol 246(4):708–719

    Article  CAS  PubMed  Google Scholar 

  • Grant VJ, Chamley LW (2010) Can mammalian mothers influence the sex of their offspring peri-conceptually? Reproduction 140(3):425–433

    Article  CAS  PubMed  Google Scholar 

  • Grant VJ, France JT (2001) Dominance and testosterone in women. Biol Psychol 58(1):41–47

    Article  CAS  PubMed  Google Scholar 

  • Grant VJ, Irwin R (2005) Follicular fluid steroid levels and subsequent sex of bovine embryos. J Exp Zool A Comp Exp Biol 303(12):1120–1125

    Article  PubMed  CAS  Google Scholar 

  • Grant VJ, Irwin R, Standley N, Shelling A, Chamley L (2008) Sex of bovine embryos may be related to mothers’ preovulatory follicular testosterone. Biol Reprod 78(5):812–815

    Article  CAS  PubMed  Google Scholar 

  • Groothuis TG, Schwabl H (2008) Hormone-mediated maternal effects in birds: mechanisms matter but what do we know of them? Philos Trans R Soc Lond B Biol Sci 363(1497):1647–1661

    Article  CAS  PubMed  Google Scholar 

  • Hayward LS, Wingfield JC (2004) Maternal corticosterone is transferred to avian yolk and may alter offspring growth and adult phenotype. Gen Comp Endocrinol 135(3):365–371

    Article  CAS  PubMed  Google Scholar 

  • Helle S, Laaksonen T, Adamsson A, Paranko J, Huitu O (2008) Female field voles with high testosterone and glucose levels produce male-biased litters. Anim Behav 75(3):1031–1039

    Article  Google Scholar 

  • Ideta A, Hayama K, Kawashima C, Urakawa M, Miyamoto A, Aoyagi Y (2009) Subjecting holstein heifers to stress during the follicular phase following superovulatory treatment may increase the female sex ratio of embryos. J Reprod Dev 55(5):529–533

    Article  PubMed  Google Scholar 

  • James WH (1985) The sex ratio of infants born after hormonal induction of ovulation. BJOG Int J Obstet Gynaecol 92(3):299–301

    Article  CAS  Google Scholar 

  • James WH (1996a) Evidence that mammalian sex ratios at birth are partially controlled by parental hormone levels at the time of conception. J Theor Biol 180(4):271–286

    Article  CAS  PubMed  Google Scholar 

  • James WH (1996b) Further concepts on regulators of the sex ratio in human offspring: Interpregnancy intervals, high maternal age and seasonal effects on the human sex ratio. Hum Reprod 11(1):7–8

    Article  CAS  PubMed  Google Scholar 

  • James WH (1997) A potential mechanism for sex ratio variation in mammals. J Theor Biol 189(3):253–255

    Article  CAS  PubMed  Google Scholar 

  • James WH (2004) Further evidence that mammalian sex ratios at birth are partially controlled by parental hormone levels around the time of conception. Hum Reprod 19(6):1250–1256

    Article  CAS  PubMed  Google Scholar 

  • James WH (2008) Evidence that mammalian sex ratios at birth are partially controlled by parental hormone levels around the time of conception. J Endocrinol 198(1):3–15

    Article  CAS  PubMed  Google Scholar 

  • Jeyendran R, Ven H, Rosecrans R, Perez-Pelaez M, Al-Hasani S, Zaneveld L (1989) Chemical constituents of human seminal plasma: relationship to fertility/Chemische Bestandteile des menschlichen Spermaplasmas: Beziehungen zur Fertilität. Andrologia 21(5):423–428

    Article  CAS  PubMed  Google Scholar 

  • Johnson AJ (2015) Reproduction in the female. In: Scanes CG (ed) Sturkie’s avian physiology, 6th edn. Academic Press, Boston, MA, pp 635–665

    Chapter  Google Scholar 

  • Jope T, Lammert A, Kratzsch J, Paasch U, Glander HJ (2003) Leptin and leptin receptor in human seminal plasma and in human spermatozoa. Int J Androl 26(6):335–341

    Article  CAS  PubMed  Google Scholar 

  • Karlsson C, Lindell K, Svensson E, Bergh C, Lind P, Billig H, Carlsson LM, Carlsson B (1997) Expression of functional leptin receptors in the human ovary. J Clin Endocrinol Metab 82(12):4144–4148

    CAS  PubMed  Google Scholar 

  • Kheradmand A, Taati M, Babaei H (2009) The effects of chronic administration of ghrelin on rat sperm quality and membrane integrity. Anim Biol 59(2):159–168

    Article  Google Scholar 

  • Krackow S (1995) Potential mechanisms for sex ratio adjustment in mammals and birds. Biol Rev 70(2):225–241

    Article  CAS  PubMed  Google Scholar 

  • Lampiao F, Du Plessis SS (2008) Insulin and leptin enhance human sperm motility, acrosome reaction and nitric oxide production. Asian J Androl 10(5):799–807

    Article  CAS  PubMed  Google Scholar 

  • Lane EA, Hyde TS (1973) Effect of maternal stress on fertility and sex ratio: a pilot study with rats. J Abnorm Psychol 82(1):78

    Article  CAS  PubMed  Google Scholar 

  • Louhio H, Hovatta O, Sjöberg J, Tuuri T (2000) The effects of insulin, and insulin-like growth factors I and II on human ovarian follicles in long-term culture. Mol Hum Reprod 6(8):694–698

    Article  CAS  PubMed  Google Scholar 

  • Luconi M, Muratori M, Forti G, Baldi E (1999) Identification and characterization of a novel functional estrogen receptor on human sperm membrane that interferes with progesterone effects. J Clin Endocrinol Metab 84(5):1670–1678

    Article  CAS  PubMed  Google Scholar 

  • Lyster W (1971) Three patterns of seasonality in American births. Am J Obstet Gynecol 110(7):1025–1028

    Article  CAS  PubMed  Google Scholar 

  • Macaulay AD, Hamilton CK, King WA, Bartlewski PM (2013) Influence of physiological concentrations of androgens on the developmental competence and sex ratio of in vitro produced bovine embryos. Reprod Biol 13(1):41–50

    Article  PubMed  Google Scholar 

  • Mann T, Lutwak-Mann C (2012) Male reproductive function and semen: themes and trends in physiology, biochemistry and investigative andrology. Springer Science & Business Media, Berlin

    Google Scholar 

  • Martinez F, Kaabi M, Martinez-Pastor F, Alvarez M, Anel E, Boixo J, De Paz P, Anel L (2004) Effect of the interval between estrus onset and artificial insemination on sex ratio and fertility in cattle: a field study. Theriogenology 62(7):1264–1270

    Article  CAS  PubMed  Google Scholar 

  • Mathews F, Johnson PJ, Neil A (2008) You are what your mother eats: evidence for maternal preconception diet influencing foetal sex in humans. Proc R Soc Lond B Biol Sci 275(1643):1661–1668

    Article  Google Scholar 

  • Mazerbourg S, Bondy C, Zhou J, Monget P (2003) The insulin-like growth factor system: a key determinant role in the growth and selection of ovarian follicles? a comparative species study. Reprod Domest Anim 38(4):247–258

    Article  CAS  PubMed  Google Scholar 

  • Nakayama Y, Yamamoto T, Abé SI (2004) IGF-I, IGF-II and insulin promote differentiation of spermatogonia to primary spermatocytes in organ culture of newt testes. Int J Dev Biol 43(4):343–347

    Google Scholar 

  • Navara KJ (2010) Programming of offspring sex ratios by maternal stress in humans: assessment of physiological mechanisms using a comparative approach. J Comp Physiol B 180(6):785–796

    Article  PubMed  Google Scholar 

  • Navara KJ, Mendonça MT (2008) Yolk androgens as pleiotropic mediators of physiological processes: a mechanistic review. Comp Biochem Physiol A Mol Integr Physiol 150(4):378–386

    Article  PubMed  CAS  Google Scholar 

  • Navara K, Siefferman L, Hill G, Mendonca M (2006) Yolk androgens vary inversely to maternal androgens in eastern bluebirds: an experimental study. Funct Ecol 20(3):449–456

    Article  Google Scholar 

  • Onagbesan O, Vleugels B, Buys N, Bruggeman V, Safi M, Decuypere E (1999) Insulin-like growth factors in the regulation of avian ovarian functions. Domest Anim Endocrinol 17(2):299–313

    Article  CAS  PubMed  Google Scholar 

  • Onagbesan O, Bruggeman V, Decuypere E (2009) Intra-ovarian growth factors regulating ovarian function in avian species: a review. Anim Reprod Sci 111(2):121–140

    Article  CAS  PubMed  Google Scholar 

  • Perret M (2005) Relationship between urinary estrogen levels before conception and sex ratio at birth in a primate, the gray mouse lemur. Hum Reprod 20(6):1504–1510

    Article  CAS  PubMed  Google Scholar 

  • Petrie M, Schwabl H, Brande-Lavridsen N, Burke T (2001) Maternal investment: sex differences in avian yolk hormone levels. Nature 412(6846):498–498

    Article  CAS  PubMed  Google Scholar 

  • Pike TW (2005) Sex ratio manipulation in response to maternal condition in pigeons: evidence for pre-ovulatory follicle selection. Behav Ecol Sociobiol 58(4):407–413

    Article  Google Scholar 

  • Pike TW, Petrie M (2005) Maternal body condition and plasma hormones affect offspring sex ratio in peafowl. Anim Behav 70(4):745–751

    Article  Google Scholar 

  • Pike TW, Petrie M (2006) Experimental evidence that corticosterone affects offspring sex ratios in quail. Proc R Soc Lond B Biol Sci 273(1590):1093–1098

    Article  CAS  Google Scholar 

  • Pilz K, Smith H (2004) Egg yolk androgen levels increase with breeding density in the European starling, Sturnus vulgaris. Funct Ecol 18(1):58–66

    Article  Google Scholar 

  • Pinson SE, Parr CM, Wilson JL, Navara KJ (2011a) Acute corticosterone administration during meiotic segregation stimulates females to produce more male offspring. Physiol Biochem Zool 84(3):292–298

    Article  CAS  PubMed  Google Scholar 

  • Pinson SE, Wilson JL, Navara KJ (2011b) Elevated testosterone during meiotic segregation stimulates laying hens to produce more sons than daughters. Gen Comp Endocrinol 174(2):195–201

    Article  CAS  PubMed  Google Scholar 

  • Pinson SE, Wilson JL, Navara KJ (2015) Timing matters: corticosterone injections 4 h before ovulation bias sex ratios towards females in chickens. J Comp Physiol B 185(5):539–546

    Article  CAS  PubMed  Google Scholar 

  • Pratt N, Lisk R (1990) Dexamethasone can prevent stress-related litter deficits in the golden hamster. Behav Neural Biol 54(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Reed WL, Vleck CM (2001) Functional significance of variation in egg-yolk androgens in the American coot. Oecologia 128(2):164–171

    Article  PubMed  Google Scholar 

  • Rosenfeld CS, Grimm KM, Livingston KA, Brokman AM, Lamberson WE, Roberts RM (2003) Striking variation in the sex ratio of pups born to mice according to whether maternal diet is high in fat or carbohydrate. Proc Natl Acad Sci 100(8):4628–4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutkowska J, Cichoń M (2006) Maternal testosterone affects the primary sex ratio and offspring survival in zebra finches. Anim Behav 71(6):1283–1288

    Article  Google Scholar 

  • Ryan CP, Anderson WG, Gardiner LE, Hare JF (2011) Stress-induced sex ratios in ground squirrels: support for a mechanistic hypothesis. Behav Ecol 23:160–167

    Google Scholar 

  • Ryan CP, Anderson WG, Berkvens CN, Hare JF (2014) Maternal gestational cortisol and testosterone are associated with trade-offs in offspring sex and number in a free-living rodent (Urocitellus richardsonii). PLoS One 9(10):e111052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saino N, Ambrosini R, Martinelli R, Calza S, Møller A, Pilastro A (2002) Offspring sexual dimorphism and sex-allocation in relation to parental age and paternal ornamentation in the barn swallow. Mol Ecol 11(8):1533–1544

    Article  CAS  PubMed  Google Scholar 

  • Sas M, Szöllösi J (1980) Sex ratio of children of fathers with spermatic disorders following hormone therapy. Orv Hetil 121(46):2807

    CAS  PubMed  Google Scholar 

  • Schwabl H (1993) Yolk is a source of maternal testosterone for developing birds. Proc Natl Acad Sci 90(24):11446–11450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwabl H (1997) The contents of maternal testosterone in house sparrow passer domesticus eggs vary with breeding conditions. Naturwissenschaften 84(9):406–408

    Article  CAS  PubMed  Google Scholar 

  • Shargal D, Shore L, Roteri N, Terkel A, Zorovsky Y, Shemesh M, Steinberger Y (2008) Fecal testosterone is elevated in high ranking female ibexes (Capra nubiana) and associated with increased aggression and a preponderance of male offspring. Theriogenology 69(6):673–680

    Article  CAS  PubMed  Google Scholar 

  • Shini S, Shini A, Huff G (2009) Effects of chronic and repeated corticosterone administration in rearing chickens on physiology, the onset of lay and egg production of hens. Physiol Behav 98(1):73–77

    Article  CAS  PubMed  Google Scholar 

  • Sirotkin A, Grossmann R, María-Peon M, Roa J, Tena-Sempere M, Klein S (2006) Novel expression and functional role of ghrelin in chicken ovary. Mol Cell Endocrinol 257:15–25

    Article  PubMed  CAS  Google Scholar 

  • Snyder RG (1961) The sex ratio of offspring of pilots of high performance military aircraft. Hum Biol 33(1):1–10

    Google Scholar 

  • Sockman KW, Schwabl H (1999) Daily estradiol and progesterone levels relative to laying and onset of incubation in canaries. Gen Comp Endocrinol 114(2):257–268

    Article  CAS  PubMed  Google Scholar 

  • Spicer LJ, Francisco CC (1997) The adipose obese gene product, leptin: evidence of a direct inhibitory role in Ovarian function. Endocrinology 138(8):3374–3379

    Article  CAS  PubMed  Google Scholar 

  • Steculorum SM, Bouret SG (2011) Developmental effects of ghrelin. Peptides 32(11):2362–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tangalakis K, Lumbers E, Moritz K, Towstoless M, Wintour E (1992) Effect of cortisol on blood pressure and vascular reactivity in the ovine fetus. Exp Physiol 77(5):709–717

    Article  CAS  PubMed  Google Scholar 

  • Tena-Sempere M, Manna P, Zhang F, Pinilla L, Gonzalez L, Dieguez C, Huhtaniemi I, Aguilar E (2001) Molecular mechanisms of leptin action in adult rat testis: potential targets for leptin-induced inhibition of steroidogenesis and pattern of leptin receptor messenger ribonucleic acid expression. J Endocrinol 170(2):413–423

    Article  CAS  PubMed  Google Scholar 

  • Vandenbergh JG, Huggett CL (1994) Mother’s prior intrauterine position affects the sex ratio of her offspring in house mice. Proc Natl Acad Sci 91(23):11055–11059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veiga JP, Viñuela J, Cordero PJ, Aparicio JM, Polo V (2004) Experimentally increased testosterone affects social rank and primary sex ratio in the spotless starling. Horm Behav 46(1):47–53

    Article  CAS  PubMed  Google Scholar 

  • von Engelhardt N, Dijkstra C, Daan S, Groothuis TG (2004) Effects of 17-β-estradiol treatment of female zebra finches on offspring sex ratio and survival. Horm Behav 45(5):306–313

    Article  CAS  Google Scholar 

  • Wallace J, White I (1965) Studies of glycerylphosphorylcholine diesterase in the female reproductive tract. J Reprod Fertil 9(2):163–176

    Article  CAS  PubMed  Google Scholar 

  • Wallace J, Stone G, White I (1964) The influence of some oestrogens and progestogens on the activity of glycerylphosphorylcholine diesterase in rinsings of the rat uterus. J Endocrinol 29(2):175–184

    Article  CAS  PubMed  Google Scholar 

  • Wang T-H, Chang C-L, H-M W, Chiu Y-M, Chen C-K, Wang H-S (2006) Insulin-like growth factor-II (IGF-II), IGF-binding protein-3 (IGFBP-3), and IGFBP-4 in follicular fluid are associated with oocyte maturation and embryo development. Fertil Steril 86(5):1392–1401

    Article  CAS  PubMed  Google Scholar 

  • Whittingham LA, Schwabl H (2002) Maternal testosterone in tree swallow eggs varies with female aggression. Anim Behav 63(1):63–67

    Article  Google Scholar 

  • Whyte J, Alexenko A, Davis A, Ellersieck M, Fountain E, Rosenfeld C (2007) Maternal diet composition alters serum steroid and free fatty acid concentrations and vaginal pH in mice. J Endocrinol 192(1):75–81

    Article  CAS  PubMed  Google Scholar 

  • Wilder RL (1995) Neuroendocrine-immune system interactions and autoimmunity. Annu Rev Immunol 13(1):307–338

    Article  CAS  PubMed  Google Scholar 

  • Willis D, Franks S (1995) Insulin action in human granulosa cells from normal and polycystic ovaries is mediated by the insulin receptor and not the type-I insulin-like growth factor receptor. J Clin Endocrinol Metab 80(12):3788–3790

    Article  CAS  PubMed  Google Scholar 

  • Yang Y-J, Cao Y-J, Bo S-M, Peng S, Liu W-M, Duan E-K (2006) Leptin-directed embryo implantation: leptin regulates adhesion and outgrowth of mouse blastocysts and receptivity of endometrial epithelial cells. Anim Reprod Sci 92(1):155–167

    Article  CAS  PubMed  Google Scholar 

  • Zachow RJ, Magoffin DA (1997) Direct intraovarian effects of leptin: impairment of the synergistic action of insulin-like growth factor-I on follicle-stimulating hormone-dependent estradiol-17β production by rat ovarian granulosa cells. Endocrinology 138(2):847–850

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Du W, Chen H, Zhao J, Pei J, Lin X (2006) [Impact of reproductive hormone on mouse embryo sexes] Fen zi xi bao sheng wu xue bao 39(6):573–577

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Navara, K.J. (2018). Hormones Rule the Roost: Hormonal Influences on Sex Ratio Adjustment in Birds and Mammals. In: Choosing Sexes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-71271-0_7

Download citation

Publish with us

Policies and ethics