Skip to main content

Introduction

  • Chapter
  • First Online:
  • 398 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSINTELL))

Abstract

Based on the evolution of a variable or a set of variables given in a time series, to predict future values of this variable we should seek the dynamic laws governing the real state of the system over time. This preliminary step is the prediction modeling process. In short, time series analysis aims at drawing conclusions about a complex system using past data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brocklebank, J.C., Dickey, D.A.: SAS for Forecasting Series, pp. 6–140. SAS Institute Inc., Cary, NC, USA (2003)

    MATH  Google Scholar 

  2. Brockwell, P.D., Davis, R.A.: Introduction to Time Series and Forecasting, pp. 1–219. Springer, New York (2002)

    MATH  Google Scholar 

  3. Horikowa, S., Furuhashi T., Uchikawa, Y.: On fuzzy modeling using fuzzy neural networks with the backpropagation algorithm. IEEE Trans. Neural Netw. 3 (1992)

    Google Scholar 

  4. Melin, P., Soto, J., Castillo, O., Soria, J.: A new approach for time series prediction using ensembles of ANFIS models. Experts Syst. Appl. 39(3), 3494–3506 (2012)

    Article  Google Scholar 

  5. Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1992)

    Google Scholar 

  6. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and Soft Computing. Prentice-Hall, New York (1997)

    Google Scholar 

  7. Lin, Y.C., Lee, C.H.: System identification and adaptive filter using a novel fuzzy neuro system. Int. J. Comput. Cogn. 5(1), 2 (2007)

    Google Scholar 

  8. Hagras, H.: Comments on dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Trans. Syst. Man Cybern. Part B 36(5), 1206–1209 (2006)

    Article  Google Scholar 

  9. Wang, C.H., Cheng, C.S., Lee, T.T.: Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Trans. Syst. Man Cybern. Part B: Cybern. 34(3), 1462–1477 (2004)

    Article  Google Scholar 

  10. Lee, C.H., Lin, Y.C.: Type-2 fuzzy neuro system via input-to-state-stability approach. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) International Symposium on Neural Networks, vol. 4492, pp. 317–327. Springer, Heidelberg, LNCS (2007)

    Google Scholar 

  11. Lee, C.H., Hong, J.L., Lin, Y.C., Lai, W.Y.: Type-2 fuzzy neural network systems and learning. Int. J. Comput. Cogn. 1(4), 79–90 (2003)

    Google Scholar 

  12. Ascia, G., Catania, V., Panno, D.: An integrated fuzzy-GA approach for buffer management. IEEE Trans. Fuzzy Syst. 14(4), 528–541 (2006)

    Article  Google Scholar 

  13. Pedrycz, W.: Fuzzy Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (1997)

    Book  MATH  Google Scholar 

  14. Chiou, Y.C., Lan, L.W.: Genetic fuzzy logic controller: an iterative evolution algorithm with new encoding method. Fuzzy Sets Syst. 152(3), 617–635 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Trans. Fuzzy Syst. 3, 260–270 (1995)

    Article  Google Scholar 

  16. Gaxiola, F., Melin, P., Valdez, F., Castillo, O.: Optimization of type-2 fuzzy weight for neural network using genetic algorithm and particle swarm optimization. In: World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 22–28 (2013)

    Google Scholar 

  17. Wu, D., Wan-Tan, W.: Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers. Eng. Appl. Artif. Intell. 19(8), 829–841 (2006)

    Article  Google Scholar 

  18. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 7, 1–13 (1975)

    Article  MATH  Google Scholar 

  19. Zadeh, L.A.: Fuzzy logic, neural networks and soft computing. Commun. ACM 37(3), 77–84 (1994)

    Article  Google Scholar 

  20. Pedrycz, W.: Fuzzy Modelling: Paradigms and Practice. Kluwer Academic Press, Dordrecht (1996)

    Book  MATH  Google Scholar 

  21. Takagi, T., Sugeno, M.: Derivation of fuzzy control rules from human operation control actions. In: Proceedings of the IFAC Symposium on Fuzzy Information, Knowledge Representation and Decision Analysis, pp. 55–60 (1983)

    Google Scholar 

  22. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15, 116–132 (1985)

    Google Scholar 

  23. Karnik, N.N., Mendel, J.M.: Applications of type-2 fuzzy logic systems to forecasting of time-series. Inf. Sci. 120, 89–111 (1999)

    Article  MATH  Google Scholar 

  24. Wu, D., Mendel, J.M.: A vector similarity measure for interval type-2 fuzzy sets and type-1 fuzzy sets. Inf. Sci. 178, 381–402 (2008)

    Article  MATH  Google Scholar 

  25. Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, NJ (2001)

    MATH  Google Scholar 

  26. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing, Boston, MA (1996)

    Google Scholar 

  27. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, NJ (2003)

    MATH  Google Scholar 

  28. Haykin, S.: Adaptive Filter Theory. Prentice Hall, Englewood Cliffs. ISBN 0-13-048434-2 (2002)

    Google Scholar 

  29. Pulido, M., Melin, P., Castillo, O.: Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican Stock Exchange. Inf. Sci. 280, 188–204 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Soto, J., Melin, P., Castillo, O.: Time series prediction using ensembles of ANFIS models with genetic optimization of interval type-2 and type-1 fuzzy integrators. Int. J. Hybrid Intel. Syst. 11(3), 211–226 (2014)

    Article  Google Scholar 

  31. Bonissone, P.P., Subbu, R., Eklund, N., Kiehl, T.R.: Evolutionary algorithms + domain knowledge = real-world evolutionary computation. IEEE Trans. Evol. Comput. 10(3), 256–280 (2006)

    Article  Google Scholar 

  32. Engelbrech, P.: Fundamentals of Computational of Swarm Intelligence: Basic Particle Swarm Optimization, pp. 93–129. Wiley, New York (2005)

    Google Scholar 

  33. Deb, K.: A population-based algorithm-generator for real-parameter optimization. Springer, Heidelberg (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Soto .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soto, J., Melin, P., Castillo, O. (2018). Introduction. In: Ensembles of Type 2 Fuzzy Neural Models and Their Optimization with Bio-Inspired Algorithms for Time Series Prediction. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-71264-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71264-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71263-5

  • Online ISBN: 978-3-319-71264-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics