Skip to main content

Optimization of Numerical Algorithms for Solving Inverse Problems of Ultrasonic Tomography on a Supercomputer

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 793))

Abstract

The paper is dedicated to optimizing numerical algorithms to solve wave tomography problems by using supercomputers. The problem is formulated as a non-linear coefficient inverse problem for the wave equation. Due to the huge amount of computations required, solving such problems is impossible without the use of high-performance supercomputers. Gradient iterative methods are employed to solve the problem. The gradient of the residual functional is calculated from the solutions of the direct and the “conjugate” wave-propagation problems with transparent boundary conditions. Two formulations of the transparency condition are compared. We show that fourth-order finite-difference schemes allow us to reduce the size of the grid by a factor of 1.5–2 in each coordinate compared to second-order schemes. This makes it possible to significantly reduce the amount of computations and memory required, which is especially important for 3D problems of wave tomography. The primary application of the method is medical ultrasonic tomography.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bazulin, A.E., Bazulin, E.G., Vopilkin, A.K., Kokolev, S.A., Romashkin, S.V., Tikhonov, D.S.: Application of 3D coherent processing in ultrasonic testing. Russ. J. Nondestr. Test. 50(2), 92–108 (2014)

    Article  Google Scholar 

  2. Ruvio, G., Solimene, R., D’Alterio, A., Ammann, M.J., Pierri, R.: RF breast cancer detection employing a noncharacterized vivaldi antenna and a MUSIC-inspired algorithm. Int. J. RF Microwave Comp. Aid Eng. 23, 598–609 (2012)

    Article  Google Scholar 

  3. Tran-Duc, T., Linh-Trung, N., Do, M.N.: Modified distorted born iterative method for ultrasound tomography by random sampling. In: International Symposium on Communications and Information Technologies (ISCIT), pp. 1065–1068, Gold Coast, QLD (2012)

    Google Scholar 

  4. Goncharskii, A.V., Romanov, S.Y.: On a three-dimensional diagnostics problem in the wave approximation. Comput. Math. Math. Phys. 40(9), 1308–1311 (2000)

    MATH  MathSciNet  Google Scholar 

  5. Goncharskii, A.V., Ovchinnikov, S.L., Romanov, S.Y.: On the one problem of wave diagnostic. Moscow Univ. Comput. Math. Cybern. 34(1), 1–7 (2010)

    Article  MATH  Google Scholar 

  6. Duric, N., Littrup, P., Li, C., Roy, O., Schmidt, S., Janer, R., Cheng, X., Goll, J., Rama, O., Bey-Knight, L., Greenway, W.: Breast ultrasound tomography: bridging the gap to clinical practice. In: Proceedings of SPIE, Medical Imaging: Ultrasonic Imaging, Tomography, and Therapy, vol. 8320, p. 83200O (2012)

    Google Scholar 

  7. Gemmeke, H., Berger, L., Birk, M., Gobel, G., Menshikov, A., Tcherniakhovski, D., Zapf, M., Ruiter, N.V.: Hardware setup for the next generation of 3D ultrasound computer tomography. In: IEEE Nuclear Science Symposuim and Medical Imaging Conference, pp. 2449–2454 (2010)

    Google Scholar 

  8. Wiskin, J., Borup, D., Andre, M., Johnson, S., Greenleaf, J., Parisky, Y., Klock, J.: Three-dimensional nonlinear inverse scattering: Quantitative transmission algorithms, refraction corrected reflection, scanner design, and clinical results. J. Acoust. Soc. Am. 133, 3229 (2013)

    Article  Google Scholar 

  9. Natterer, F.: Possibilities and limitations of time domain wave equation imaging. Contemp. Math. Providence Am. Math. Soc. 559, 151–162 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Natterer, F.: Sonic imaging. In: Handbook of Mathematical Methods in Imaging, pp. 1253–1278. Springer, New York (2015)

    Google Scholar 

  11. Beilina, L., Klibanov, M.V., Kokurin, M.Y.: Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem. J. Math. Sci. 167, 279–325 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Beilina, L., Klibanov, M.V.: Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems. Springer, New York (2012)

    Book  MATH  Google Scholar 

  13. Goncharskii, A.V., Romanov, S.Y.: Two approaches to the solution of coefficient inverse problems for wave equations. Comput. Math. Math. Phys. 52, 245–251 (2012)

    Article  MathSciNet  Google Scholar 

  14. Goncharsky, A.V., Romanov, S.Y.: Supercomputer technologies in inverse problems of ultrasound tomography. Inverse Probl. 29(7), 075004 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goncharsky, A.V., Romanov, S.Y.: Inverse problems of ultrasound tomography in models with attenuation. Phys. Med. Biol. 59(8), 1979–2004 (2014)

    Article  Google Scholar 

  16. Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Inverse problems of 3D ultrasonic tomography with complete and incomplete range data. Wave Motion 51(3), 389–404 (2014)

    Article  MathSciNet  Google Scholar 

  17. Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: A computer simulation study of soft tissue characterization using low-frequency ultrasonic tomography. Ultrasonics 67, 136–150 (2016)

    Article  Google Scholar 

  18. Goncharskii, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Low-frequency three-dimensional ultrasonic tomography. Dokl. Phys. 61(5), 211–214 (2016)

    Article  Google Scholar 

  19. Goncharsky, A.V., Romanov, S.Y.: Iterative methods for solving coefficient inverse problems of wave tomography in models with attenuation. Inverse Prob. 33(2), 025003 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bilbao, S.: Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics. Wiley, Chichester (2009)

    Book  MATH  Google Scholar 

  21. Manolis, G.D., Beskos, D.E.: Boundary Element Methods in Elastodynamics. Unwin Hyman, London (1988)

    Google Scholar 

  22. Givoli, D., Keller, J.B.: Non-reflecting boundary conditions for elastic waves. Wave Motion 12(3), 261–279 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Clayton, R., Engquist, B.: Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seismol. Soc. Am. 67(6), 1529–1540 (1977)

    Google Scholar 

  24. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31, 629 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  25. Alpert, B., Greengard, L., Hagstrom, T.: Boundary conditions for the time-dependent wave equation. J. Comput. Phys. 180, 270–296 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sadovnichy, V., Tikhonravov, A., Voevodin, V., Opanasenko, V.: “Lomonosov”: Supercomputing at Moscow State University. In: Vetter, Contemporary High Performance Computing: from Petascale Toward Exascale, pp. 283–307. Chapman and Hall/CRC, Boca Raton (2013)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Russian Science Foundation (project No. 17–11–01065). The study was carried out at the Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Romanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Romanov, S. (2017). Optimization of Numerical Algorithms for Solving Inverse Problems of Ultrasonic Tomography on a Supercomputer. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2017. Communications in Computer and Information Science, vol 793. Springer, Cham. https://doi.org/10.1007/978-3-319-71255-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71255-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71254-3

  • Online ISBN: 978-3-319-71255-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics