Skip to main content

The Integrated Approach to Solving Large-Size Physical Problems on Supercomputers

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 793))

Included in the following conference series:

Abstract

This paper presents the results obtained by the authors on applying an integrated approach to solving geoseismics, astrophysics, and plasma physics problems on high-performance computers. The concept of the integrated approach in the context of mathematical modeling of physical processes is understood as constructing a physico-mathematical model of a phenomenon, a numerical method, a parallel algorithm and its software implementation with the efficient use of a supercomputer architecture. With this approach, it becomes relevant to compare not only the methods of solving a problem but, also, physical and mathematical statements of a problem aimed at creating the most effective implementation of a chosen computing architecture. The scalability of algorithms is investigated using the multi-agent system AGNES simulating the behavior of computing nodes based on the current state of computer equipment characteristics. In addition, special attention in this paper is given to the energy efficiency of algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reed, D.A., Dongarra, J.: Exascale computing and big data. Commun. ACM 58(7), 56–68 (2015)

    Article  Google Scholar 

  2. Keyes, D.E.: Exaflop/s: the why and the how. C.R. Mechanique 339, 70–77 (2011)

    Article  MATH  Google Scholar 

  3. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view of the parallel computing landscape. Commun. ACM 52, 56–67 (2009)

    Article  Google Scholar 

  4. Sterling, T.: Achieving scalability in the presence of asynchrony for exascale computing. Adv. Parall. Comput. 24, 104–117 (2013)

    Google Scholar 

  5. Glinskiy, B.M., Kulikov, I.M., Snytnikov, A.V., Chernykh, I.G., Weins, D.: A multilevel approach to algorithm and software design for exaflops supercomputers (in Russian). Vychisl. Metody Programm. 16, 543–556 (2015)

    Google Scholar 

  6. Wooldridge, M.: Introduction to MultiAgent Systems. John Wiley & Sons, Ltd., England (2002)

    Google Scholar 

  7. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE. Wiley, Chichester (2007)

    Book  Google Scholar 

  8. Podkorytov, D., Rodionov, A., Choo, H.: Agent-based simulation system AGNES for networks modeling: review and researching. In: Proceedings of the 6th International Conference on Ubiquitous Information Management and Communication (ACM ICUIMC 2012), p. 115. ACM (2012). ISBN: 978-1-4503-1172-4

    Google Scholar 

  9. Glinsky, B.M., Marchenko, M.A., Mikhailenko, B.G., Rodionov, A.S., Chernykh, I.G., Karavaev, D.A., Podkorytov, D.I., Vins, D.V.: Simulation modeling of parallel algorithms for Exaflop supercomputers (in Russian). Inf. Technol. Comput. Syst. 4, 3–14 (2013)

    Google Scholar 

  10. Bihn, M., Weiland, T.: A stable discretization scheme for the simulation of elastic waves. In: Proceedings of the 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics (IMACS 1997), Berlin, vol. 2, pp. 75–80 (1997)

    Google Scholar 

  11. Sapetina, A.F.: Supercomputer-aided comparison of the efficiency of using different mathematical statements of the 3D geophysical problem. Bull. NCC Ser. Numer. Anal. 18, 1–9 (2016)

    MATH  Google Scholar 

  12. Glinskii, B.M., Martynov, V.N., Sapetina, A.F.: 3D modeling of seismic wave fields in a medium specific to volcanic structures. Yakutian Math. J. 22(3), 84–98 (2015)

    MATH  Google Scholar 

  13. Vshivkov, V.A., Lazareva, G.G., Snytnikov, A.V., Kulikov, I.M., Tutukov, A.V.: ApJS 194, 47 (2011)

    Article  Google Scholar 

  14. Kulikov, I.M.: ApJS 214, 12 (2014)

    Article  Google Scholar 

  15. Mitchell, N., Vorobyov, E., Hensler, G.: MNRAS 428, 2674–2687 (2013)

    Article  Google Scholar 

  16. Vorobyov, E., Recchi, S., Hensler, G.: A&A 579, A9 (2015)

    Article  Google Scholar 

  17. González, M., Audit, E., Huynh, P.: A&A 464, 429–435 (2007)

    Article  Google Scholar 

  18. Popov, M., Ustyugov, S.: Comput. Math. Math. Phys. 48, 477–499 (2008)

    Article  MathSciNet  Google Scholar 

  19. Kulikov, I., Vorobyov, E.: J. Comput. Phys. 317, 318–346 (2016)

    Article  MathSciNet  Google Scholar 

  20. Lowenthal, D., Supinski, B., Schulz, M.: Adagio: making DVS practical for complex HPC Barry Rountree. In: The 23rd International Conference on Supercomputing, ICS, New York (2009)

    Google Scholar 

  21. Ravi, S., Raghunathan, A., Chakradhar, S.T.: Efficient RTL power estimation for large designs. In: Proceedings of the 16th International Conference on VLSI Design, New Delhi, India, pp. 431–439, January 2003

    Google Scholar 

  22. Lively, C., et al.: E-AMOM: an energy-aware modeling and optimization methodology for scientific applications on multicore systems. Comput. Sci. Res. Dev. 29(3), 197–210 (2014)

    Article  Google Scholar 

  23. Ren, D.Q.: Algorithm level power efficiency optimization for CPU–GPU processing element in data intensive SIMD/SPMD computing. J. Parall. Distrib. Comput. 71, 245–253 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research, grants 15-01-00508, 16-29-15120, 16-07-00434, 16-01-00455 and the Grants of the President of the Russian Federation for the support of young scientists MK – 1445.2017.9, MK – 152.2017.5. The plasma code development was supported by the Russian Science Foundation under grant 16-11-10028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Sapetina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glinskiy, B., Kulikov, I., Chernykh, I., Snytnikov, A., Sapetina, A., Weins, D. (2017). The Integrated Approach to Solving Large-Size Physical Problems on Supercomputers. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2017. Communications in Computer and Information Science, vol 793. Springer, Cham. https://doi.org/10.1007/978-3-319-71255-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71255-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71254-3

  • Online ISBN: 978-3-319-71255-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics