Application of Chemostratigraphy in Clastic, Carbonate and Unconventional Reservoirs

Chapter
Part of the Advances in Oil and Gas Exploration & Production book series (AOGEP)

Abstract

Chemostratigraphy is most commonly applied to clastic sediments, particularly where biostratigraphic control is lacking. An example of such a study is in the Berkine Basin, Algeria, where it was almost impossible to use lithostratigraphy and sedimentology alone to correlate the Triassic TAGI Formation. More recently, however, the technique has been used in conjunction with other correlation tools to provide higher levels of resolution and correlation confidence. This is certainly true of a study performed on Devonian, Carboniferous and Permian sediments encountered in eastern Saudi Arabia, where both chemostratigraphy and biostratigraphy were employed. Good biostratigraphic control is largely absent in the glaciogenic Sarah Formation of NW Saudi Arabia, where chemostratigraphy, sedimentology, borehole image and seismic data were employed as part of a multidisciplinary approach to reservoir correlation. Chemostratigraphy is less commonly applied to carbonate sediments, but can be used on these lithologies with an equal degree of success. When utilizing the technique on carbonates, the correlation scheme may either relate to changes in the distribution and chemistry of the carbonate fraction, or to the provenance of detrital components (e.g. heavy minerals). A more recent development in chemostratigraphy involves the use of technique on unconventional (source rock) reservoirs where there are normally two objectives, the first being to produce a correlation scheme. A secondary aim is to apply the inorganic geochemical data to recognize organic rich zones, changes in base level and redox, and unconventional seals/cap rocks.

References

  1. Al-Hajri, S. A., Filatoff, J., Wender, L. E., & Norton, A. K. (1999). Stratigraphy and operational palynology of the Devonian system in Saudi Arabia. GeoArabia, 4(1), 53–68.Google Scholar
  2. Al-Husseini, M. I. (2004). Pre-Unayzah unconformity, Saudi Arabia. In M. I. Al-Husseini (Ed.), Carboniferous, Permian and early Triassic Arabian stratigraphy: GeoArabia special publication 3 (pp. 15–59). Bahrain: Gulf PetroLink.Google Scholar
  3. Craigie, N. W. (1998). Chemostratigraphy of middle Devonian lacustrine sediments (Unpublished PhD thesis). N.E. Scotland: University of Aberdeen.Google Scholar
  4. Craigie, N. W. (2015a). Applications of chemostratigraphy in Cretaceous sediments encountered in the North Central Rub’ al-Khali Basin, Saidi Arabia. Journal of African Earth Sciences, 104, 27–42.Google Scholar
  5. Craigie, N. W. (2015b). Applications of chemostratigraphy in middle Jurassic unconventional reservoirs in eastern Saudi Arabia. GeoArabia, 20(2), 79–110.Google Scholar
  6. Craigie, N. W., Breuer, P., & Khidir, A. (2016a). Chemostratigraphy and biostratigraphy of Devonian, Carboniferous and Permian sediments encountered in eastern Saudi Arabia: an integrated approach to reservoir correlation. Marine and Petroleum Geology, 72, 156–178.Google Scholar
  7. Craigie, N. W., Rees, A., MacPherson, K., & Berman, S. (2016b). Chemostratigraphy of the Ordovician Sarah formation, North West Saudi Arabia: An integrated approach to reservoir correlation. Marine and Petroleum Geology, 77, 1056–1080.Google Scholar
  8. Craigie, N. W., & Polo, C. A. (2017). Applications of Chemostratigraphy and sedimentology in a complex reservoir: A case study from the Permo-Carboniferous Unayzah group. Central Saudi Arabia: Marine and Petroleum Geology (in prep.)Google Scholar
  9. Davies, E. J., Ratcliffe, K. T., Montgomery, P., Pomar, L., Ellwood, B. B., & Wray, D. S. (2013). Magnetic susceptibility (X stratigraphy) and chemostratography applied to an isolated carbonate platform reef complex; Llucmajor Platform, Mallorca. SEPM Special Publication dedicated to the deposits, architecture and controls of carbonate margin, slope and basin systems.Google Scholar
  10. Eltom, H., Abdullatif, O. M., Makkawi, M. H., & Eltoum, I. E. (2017). Rare earth element geochemistry of shallow carbonate outcropping strata in Saudi Arabia: Application for depositional environments prediction. Sedimentary Geology, 348, 51–68.CrossRefGoogle Scholar
  11. Eyles, N. (1993). Earth’s glacial record and it’s tectonic setting. Earth Science Review, 35, 1–248.CrossRefGoogle Scholar
  12. Holh, S. V., Becker, H., Jiang S. Y., Ling, H. F., Guo, Q., & Struck, U. (2017). Geochemistry of Ediacaran cap dolostones across the Yangtze Platform, South China: Implications for diagenetic modification and seawater chemistry in the aftermath of the Marinoan glaciation. Journal of the Geological Society London (in press).Google Scholar
  13. Holmes, N., Atkin, D., Mahdi, S., & Ayress, M. (2015). Integrated biostratigraphy and chemical stratigraphy in the development of a reservoir-scale stratigraphic framework for the Sea Lion Field area, North Falkland Basin. Petroleum Geoscience, 21, 171–182.CrossRefGoogle Scholar
  14. Jorgensen, N. O. (1986). Chemostartigraphy of Upper Cretaceous chalk in the Danish sub-basin. Bulletin of American Association of Petroleum Geologists, 70, 309–317.Google Scholar
  15. Kinsman, D. J. J. (1969). Interpretation of Sr0U20D concentrations in carbonate minerals and rocks. Journal of Sedimentary Petrology, 39, 486–508.Google Scholar
  16. Land, L. S. (1980). The isotopic and trace element geochemistry of dolomite: The state of the art. In: D. H. Zenger, J. B. Dunham & R. C. Ethington (Eds.), Concepts and models of dolomitization (29, pp. 87–110). Society of Economic Paleontologists and Mineralogists Special Publication.Google Scholar
  17. Lippmann, F. (1973). Sedimentary carbonate minerals. New York: Springer.CrossRefGoogle Scholar
  18. Melvin, J. (2009). Heterogeneity in glaciogenic reservoirs: examples from the Ordovician and Permo-Carboniferous of Saudi-Arabia. In Glaciogenic Reservoirs and Hydrocarbon Systems, Conference Abstract Volume (pp. 37–38), Geological Society of London.Google Scholar
  19. Melvin, J., Sprague, R. A., Heine, C. J. (2005). Diamictites to aeolianites: Carboniferous–Permian climate change seen in subsurface cores from the Unayzah Formation, east-central Saudi Arabia. In G. E. Reinson, D. Hills & L. Eliuk (Eds.), 2005 CSPG core conference papers and extended abstracts CD: Calgary, Canadian Society of Petroleum Geologists (pp. 237–282).Google Scholar
  20. Pearce, T. L., Besley, B. M., & Wray, D. S. (1999). Chemostratigraphy: A method to improve interwell correlation in barren sequences—a case study using onshore Duckmantian/Stephanian sequences (West Midlands, UK). Sedimentary Geology, 124, 197–220.CrossRefGoogle Scholar
  21. Pearce, T. J., & Jarvis, I. (1991). Applications of geochemical data to modeling sediment dispersal patterns in distal turbidites: Late Quaternary of the Madeira abyssal plain. Journal of Sedimentalr Petrology, 62, 1112–1129.Google Scholar
  22. Price R. J., Norton K. A., Melvin J. A., Filatoff, J., Heine, C, J., Sprague R. A., Al-Hajri, S. (2008). Saudi Aramco Permian-Carboniferous (Unayzah) stratigraphic nomenclature of Saudi Arabia. In M. I. Al-Husseini (Ed.), Middle East petroleum geosciences conference (p. 223). GEO’2008: Gulf PetroLink, Bahrain.Google Scholar
  23. Pearce T. J., Wray, D. S., Ratcliffe, K. T., Wright, D. K., & Moscariella, A. (2005). Chemostratigraphy of the Upper Carboniferous Schooner Formation, southern North Sea. In J. D. Colinson, D. J. Evans, D. W. Holiday & N. S. Jones (Eds.), carboniferous hydrocarbon geology: The southern North Sea and surrounding onshore areas (Vol. 7, pp. 147–164). Yorkshire Geological Society, Occasional Publication Series.Google Scholar
  24. Ratcliffe, K. T., Martin, J., Pearce, T. J., Hughes, A. D., Lawton, D. E., Wray, D. S., et al. (2006). A regional chemostratigraphically-defined correlation framework for the Late Triassic TAG-I Formation in Blocks 402 and 405a, Algeria. Petroleum Geoscience, 12, 3–12.CrossRefGoogle Scholar
  25. Rees, A. J. (2015). The Late Ordovician glacial record in the subsurface of NW Saudi Arabia. In Clastic reservoirs of the Middle East-AAPG conference 23rd–25th March, Kuwait.Google Scholar
  26. Sabaou, N., Lawton, D. E., Turner, P., & Pilling, D. (2005). Floodplain deposits and soil classification: The prediction of channel sand distribution within the Triassic Argilo-Greseux Inferieur, Berkine Basin, Algeria. Journal of Petroleum Geology, 28, 3–20.CrossRefGoogle Scholar
  27. Sano, J. L., Ratcliffe K. T., & Spain D. (2013). Chemostratigraphy of the Haynesville Shale. In: U. Hammes & J. Gale (Eds.), Geology of the Haynesville Gas Shale in East Texas and West Louisiana, USA. AAPG Memoir 105, pp. 137–154.Google Scholar
  28. Sharland, P. R., Archer, R., Casey, D. M., Davies, R. B., Hall, S. H., Heward, A. P., Horbury, A. D., Simmons, M. D. (2001). Arabian Plate sequence stratigraphy (Vol. 2), GeoArabia Special Publication.Google Scholar
  29. Shukla, V. (1988). Sedimentology and geochemistry of a regional dolostone: Correlation of trace elements with dolomite fabrics. SEPM Special Publication No. 43, pp. 145–157.Google Scholar
  30. Sutcliffe, O. E., Dowdeswell, J. A., Whittington, R. L., Theron, J. N., & Craig, J. (2000). Calibrating the Late Ordovician glaciation and mass extinction by the eccentricity cycles of Earth’s orbit. Geology, 28, 967–970.CrossRefGoogle Scholar
  31. Tribovillard, N., Algeo, T., Lyons, T. W., & Riboulleau, A. (2006). Trace elements as paleoredox and paleoproductivity proxies; an update 2006. Chemical Geology, 232 (1–2), 12–32.Google Scholar
  32. Turner, P., Pilling, D., Walker, D., Exton, J., Binnie, J., & Sabaou, N. (2001). Sequence stratigraphy and sedimentology of the Late Triassic TAG-1 (Blocks 401/402, Berkine Basin, Algeria). Marine and Petroleum Geology, 18, 959–981.CrossRefGoogle Scholar
  33. Vaslet, D. (1989). Late Ordovician glacial deposits in Saudi Arabia: A lithostratigraphic revision of the Early Palaeozoic succession. Saudi Arabian Deputy Ministry for Mineral Resources, professional papers, pp. 13–44.Google Scholar
  34. Vaslet, D. (1990). Upper Ordovician glacial deposits in Saudi Arabia. Episodes, 13, 147–161.Google Scholar
  35. Veizer, J. (1983). Chemical diagenesis of carbonates: Theory and application of trace element technique. In: M. A. Arthur, T. F. Anderson, I. R. Kaplan, J. Veizer & L. S. Land (Eds.), Stable isotopes in sedimentary geology. Society of Economic Paleontologists and Mineralogists Short Course No. 10, pp. 3-1 to 3-100.Google Scholar
  36. Vishnevskaya, I., Letnikova, E., Pisareva, N., & Proshenkin, A. Chemostratigraphy of Neoproterozoic carbonate deposits of the Tuva-Mongolian and Dzabkhan continental blocks: constraints on the age, glaciation and sedimentation. In: M. Ramkumat (Ed.), 2015. Chemostratigraphy: concepts, techniques and applications, Chapter 18, pp. 451–487.Google Scholar
  37. Wender, L. E., Bryant, J. W., Dickens, M. F., Neville, A. S., & Al-Moqbel, A. M. (1998). Paleozoic (pre-Khuff) hydrocarbon geology of the Ghawar area, eastern Saudi Arabia. GeoArabia, 3, 273–302.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Exploration DepartmentSaudi AramcoDhahranSaudi Arabia

Personalised recommendations