Advertisement

Production of Chemostratigraphic Correlation Schemes

  • Neil Craigie
Chapter
Part of the Advances in Oil and Gas Exploration & Production book series (AOGEP)

Abstract

Producing a chemostratigraphic correlation scheme is probably the most challenging stage of any chemostratigraphy project. In order to avoid making interpretations based entirely on changes in grain size/lithology, it is recommended that separate schemes are proposed for sandstone and mudrock samples in studies of clastic sediments. In carbonates, no such differentiation is necessary and the data are treated as a whole. After making some final checks on data quality, profiles are plotted for each element, and then for Al-normalised data and geochemical ratios. Most chemostratigraphy projects involve the analysis of 40–55 elements (so profiles are plotted for more than 250 elements and ratios), but the majority of correlation schemes relate to variations in 4–12 key elements or ratios. Hierarchical schemes are developed, based on the recognition of correlative zones, subzones, divisions and subdivisions. In addition to being identified on element/ratio profiles, the geochemical characteristics of these chemozones can also be visualised on binary and ternary diagrams. Using histograms and DFA (Discriminant Function Analysis), it is possible to assign levels of statistical confidence to each chemozone. In recent years, chemostratigraphy has been used very often in conjunction with lithostratigraphy, biostratigraphy, sedimentology and seismic data. By employing such a multidisciplinary approach to reservoir correlation, it is possible to propose more robust correlations of higher resolution.

References

  1. Akarish, I. M., & El-Gahary, A. M. (2011). Provenance and source area weathering derived from the geochemistry of Pre-Cenomanian sandstones, East Sinai, Egypt. Journal of Applied Sciences, 11(17), 3070–3088.CrossRefGoogle Scholar
  2. Alibo, D. S., & Nozaki, Y. (1998). Rare earth elements in seawater: Particle association, shale-normalisation, and Ce oxidation. Geochimica et Cosmochimica Acta, 62, 363–372.Google Scholar
  3. Armstrong-Altrin, J. S. (2009). Provenance of sands from Cazones, Acapulco and Bahia Kino beaches, Mexico. Revista Mexicana de Ciencias Geologicas, 26, 764–782.Google Scholar
  4. Armstrong-Altrin, J. S., Nagarajan, R., Lee, Y. I., Kasper-Zubillaga, J. J., & Cόrdoba-Saldaňa, L. P. (2014). Geochemistry of sands along the San Nicoláa and San Carlos beaches, Gulf of California, Mexico: Implications for provenance. Turkish Journal of Earth Sciences, 23, 533–558.CrossRefGoogle Scholar
  5. Babechuk, M. G., Widdowson, M., Murphy, M., & Kamber, B. S. (2015). A combined Y/Ho, high field strength element (HFSE) and Nd isotope perspective on basalt weathering, Deccan Traps, India. Chemical Geology, 386, 25–41.CrossRefGoogle Scholar
  6. Bahlburg, H., & Dobrzinski, N. (2011). A review of the chemical index of alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions. In: E. Arnaud, G. P. Halverson, & G. Shields-Zhou (Eds.), The geological record of neoproterozoic glaciations (Vol. 36, pp. 81–92). Geological Society London, Memoirs.Google Scholar
  7. Berry, W. B. N., Quinby-Hunt, M. S., Wilde, P., & Orth, C. J. (1987). Use of the cerium anomaly in black shales—Climatic interpretation in the Ordovician-Silurian boundary interval, Dob’s Linn, Scotland (Vol. 19, 587p). Geological Society of America Annual MeetingGoogle Scholar
  8. Bhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91, 611–627.CrossRefGoogle Scholar
  9. Bhatia, M. R., & Cook, K. A. W. (1986). Trace element characteristics of graywackes and tectonic discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193.CrossRefGoogle Scholar
  10. Blanco, G., Germs, G. J. B., Rajesh, H. M., Chemale, F., Jr., Dussin, I. A., & Justino, D. (2011). Provenance and paleogeography of the Nama Group (Ediacaran to early Palaeozoic, Namibia): Petrography, geochemistry and U-Pb detrital zircon geochronology. Precambrian Research, 187, 15–32.CrossRefGoogle Scholar
  11. Blatt, H., Middleton, G., & Murray, R. (1972). Origin of sedimentary rocks. Prentice Hall, New Jersey. Herron, M.M., 1988. Geochemical classification of terrigenous sands and shales from core log data. Journal of Sedimentary Petrology, 58, 820–829.Google Scholar
  12. Bokhorst, M. P., Beets, C. J., Markovic, S. B., Gerasimenko, N. P., Matviishina, Z. N., & Frechen, M. (2009). Pedo-chemical climate proxies in Late Pleistocene Serbian-Ukranian loess sequences. Quaternary International, 198, 113–123.CrossRefGoogle Scholar
  13. Buggle, B., Glaser, B., Hambach, U., Gerasimenko, N., & Markovic, S. (2011). An evaluation of geochemical weathering indices in loess-paleosol studies. Quaternary International, 240, 12–21.CrossRefGoogle Scholar
  14. Caracciolo, L., Von Eynatten, H., Tolosana-Delgado, R., Critelli, S., Manetti, P., & Marchev, P. (2012). Petrological, geochemical and statistical analysis of Eocence-Oligocene sandstones of the Western Thrace Basin, Greece and Bulgaria. Journal of Sedimentary Research, 82, 482–498.CrossRefGoogle Scholar
  15. Chen, J., An, Z., & Head, J. (1999). Variation of the Rb/Sr ratios in the loess-paleosol sequences of Central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quaternary Research, 51, 215–219.CrossRefGoogle Scholar
  16. Cox, R., Lowe, D. R., & Cullers, R. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59(14), 2919–2940.Google Scholar
  17. Craigie, N. W. (2015a). Applications of chemostratigraphy in Cretaceous sediments encountered in the North Central Rub’al-Khali Basin, Saudi Arabia. Journal of African Earth Sciences, 104, 27–42.CrossRefGoogle Scholar
  18. Craigie, N. W. (2015b). Applications of chemostratigraphy in Middle Jurassic unconventional reservoirs in eastern Saudi Arabia. GeoArabia, 20(2), 79–110.Google Scholar
  19. Craigie, N. W., Breuer, P., & Khidir, A. (2016a). Chemostratigraphy and biostratigraphy of Devonian, carboniferous and Permian sediments encountered in eastern Saudi Arabia: An integrated approach to reservoir correlation. Marine and Petroleum Geology, 72, 156–178.CrossRefGoogle Scholar
  20. Craigie, N. W., & Rees, A. J. (2016). Chemostratigraphy of glaciomarine sediments in the Sarah Formation, northwest Saudi Arabia. Journal of African Earth Sciences, 117, 263–284.CrossRefGoogle Scholar
  21. Craigie, N. W., Rees, A., MacPherson, K., & Berman, S. (2016b). Chemostratigraphy of the Ordovician Sarah Formation, North-West Saudi Arabia: An integrated approach to reservoir correlation. Marine and Petroleum Geology, 77, 1056–1080.CrossRefGoogle Scholar
  22. Ding, Z. L., Sun, J. M., Yang, S. L., & Liu, T. S. (2001). Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimatic change. Geochimica et Cosmochimica Acta, 65(6), 901–913.CrossRefGoogle Scholar
  23. Elderfield, H., & Greaves, M. J. (1982). The rare earth elements in seawater. Nature, 296, 214–219.CrossRefGoogle Scholar
  24. Ellis, D. V., & Singer, M. (2007). Well logging for earth scientists: Dordrecht (p. 692p). The Netherlands: Springer Science and Business Media B.V.CrossRefGoogle Scholar
  25. Englund, J. O., & Jorgensen, P. (1973). A chemical classification system for argillacoues sediments and factors affecting their composition. Geologiska Föreningen i Stockholm Förhandlingar, 95, 72–80.CrossRefGoogle Scholar
  26. Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 63, 921–924.CrossRefGoogle Scholar
  27. Garzanti, E., Padoan, M., Andὸ, S., Resentini, A., Vezzoli, G., & Lustrino, M. (2013). Weathering and relative durability of detrital minerals in equatorial climate: Sand petrology and geochemistry in the East African Rift. The Journal of Geology, 121, 547–580.CrossRefGoogle Scholar
  28. Garzanti, E., & Resentini, A. (2016). Provenance control on chemical indices of weathering (Taiwan river sands). Sedimentary Geology, 336, 81–95.CrossRefGoogle Scholar
  29. Ghosh, S., Sarker, S., & Ghosh, P. (2012). Petrography and major element geochemistry of the PermoTriassic sandstones, central India: implications for provenance in an intracratonic pull-apart basin. Journal of Asian Earth Sciences, 43, 207–240.CrossRefGoogle Scholar
  30. Harnois, L. (1988). The CIW index: A new chemical index of weathering. Sedimentary Geology, 55, 319–322.CrossRefGoogle Scholar
  31. Haskin, L. A., Helmke, P. A., Paster, T. P., & Allen, R. O. (1971). Rare earths in meteoric, terrestrial, and lunar matter. In A. Brunfelt, E. Steinnes (Eds.), Activation analysis in geochemistry and cosmochemistry. Proceedings of NATO conference on activation analysis in geochemistry (pp. 201–218). Oslo: Universitesforlaget.Google Scholar
  32. Haskin, L. A., Wildeman, T. R., & Haskin, M. A. (1968). An accurate procedure for the determination of the rare earths by neutron activation. Journal of radioanalytical chemistry, 1, 337–348.CrossRefGoogle Scholar
  33. Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58, 820–829.Google Scholar
  34. Hildred, G., Ratcliffe, A., Schmidt, K. (2011). Application of inorganic whole-rock geochemistry to shale resource plays: An example from the Eagle Ford shale (pp. 31–38). Texas., Houston: Geological Society Northsiders Luncheon Meeting, Tuesday, April 19, 2011, Houston Geological Society Bulletin.Google Scholar
  35. Holmes, N., Atkin, D., Mahdi, S., & Ayress, M. (2015). Integrated biostratigraphy and chemical stratigraphy in the development of a reservoir-scale stratigraphic framework for the Sea Lion Field area, North Falkland Basin. Petroleum Geoscience, 21, 171–182.CrossRefGoogle Scholar
  36. Hurst, A., & Morton, A. (2014). Provenance models: The role of sandstone mineral-chemical stratigraphy. In R. A. Scott, H. R. Smyth, A. C. Morton & N. Richardson (Eds.) (Vol. 386, pp. 7–26). Geological Society Special Publications.Google Scholar
  37. Kocsis, L., Gheerbrant, E., Mouflih, M., Cappetta, H., Ulianov, A., Chiaradia, M., & Bardet, N. (2016). Gradual changes in upwelled seawater conditions (redox, pH) from the late Cretaceous through early Paleogene at the northwest coast of Africa: Negative Ce anomaly trend recorded in fossil bio-apatite. Chemical Geology, 421, 44–54.Google Scholar
  38. Liu, Y. G., Miah, M. R. U., & Schmitt, R. A. (1987). Cerium: A chemical tracer for paleo-oceanic redox conditions. Geochimica et Cosmochimica Acta, 52, 1361–1371.CrossRefGoogle Scholar
  39. Lowey, G. W. (2015). Element/aluminum ratios in chemostratigraphy: A dubious normalization resulting in spurious correlations. Geoconvention 2015, New Horizons 4 pp.Google Scholar
  40. Madhavaraju, J., Hussain, S. M., Ugeswan, J., Nagarajan, R., Ramasamy, S., & Mahalakshmi, P. (2015). Paleo-redox conditions of the Albian-Danian carbonate rocks of the Cauvery Basin, south India: Implications for chemostratigraphy. In M. Ramkumar (Ed.), Chemostratigraphy—Concepts, techniques and application (pp. 247–271). Amsterdam: Elsevier.Google Scholar
  41. Mongelli, G., Sinisi, R., Mameli, P., & Oggiano, G. (2015). Ce anomalies and trace element distribution in Sardinian lithiophorite-rich Mn concentration. Journal of Geochemical Exploration, 153, 88–96.CrossRefGoogle Scholar
  42. Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.CrossRefGoogle Scholar
  43. North, C. P., Hole, M. J., & Jones, D. G. (2005). Geochemical correlation in deltaic successions: A reality check. Geological Society of America Bulletin, 117(5/6), 620–632.CrossRefGoogle Scholar
  44. Pearce, J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace elements discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983.CrossRefGoogle Scholar
  45. Pearce, T. J., Martin, J. H., Cooper, D., & Wray, D. S. (2010). Chemostratigraphy of upper carboniferous (Pennsylvanian) sequences from the southern North Sea (United Kingdom). In K. T. Ratcliffe, & B. A. Zaitlin (Eds.), Modern alternative stratigraphic techniques; Theory and case histories (pp. 109–129). SEPM Special Publication No. 94.Google Scholar
  46. Pearce, T. J., McLean, D., Wright, D. K., Jeans, C. J., & Means, E. W. (2005). Stratigraphy of the upper carboniferous schooner formation, southern North Sea: Chemostratigraphy, mineralogy, palynology and Sm-Nd isotope analysis. In J. D. Collinson, D. W. Evans, D. W. Holliday, N. S. Jones (Eds.), Carboniferous hydrocarbon geology: The southern North Sea and surrounding onshore areas (Vol. 7, pp. 165–182). Yorkshire Geological Society, Occasional Publications series.Google Scholar
  47. Pearce, T. J., Wray, D. S., Ratcliffe, K. T., Wright, D. K., & Moscariello, A. (2005). Chemostratigraphy of the upper carboniferous schooner formation, southern North Sea. In J. D. Collinson, D. J. Evans, D. W. Holliday, & M. S. Jones (Eds.), Carboniferous hydrocarbon geology: The southern north sea and surrounding onshore areas (Vol. 7, pp. 147–164). Yorkshire Geological Society, Occasional Publications series.Google Scholar
  48. Pettijohn, F. J., Potter, P. E., & Siever, R. (1972). Sand and sandstones. New York: Springer.Google Scholar
  49. Potter, P. E. (1978). Petrology and chemistry of modern big river sands. Journal of Geology, 86, 423–449.CrossRefGoogle Scholar
  50. Ramkumar, M. (2015). Toward standardization of terminologies and recognition of chemostratigraphy as a formal stratigraphic method. In M. Ramkumar (Ed.), Chemostratigraphy—Concepts, techniques, and applications (Chap. 1, pp. 1–22). Amsterdam: Elsevier.Google Scholar
  51. Ratcliffe, K. T., Morton, A. C., & Ritcey, D. H. (2007). Whole-rock geochemistry and heavy mineral analysis as petroleum exploration tools in the Bowser and Sustut basins, British Columbia, Canada. Bulletin of Canadian Petroleum Geology, 55, 320–333.CrossRefGoogle Scholar
  52. Ratcliffe, K. T., Wilson, A., Payenberg, T., Rittersbacher, A., Hildred, G. V., & Flint, S. S. (2015). Ground trothing chemostratigraphic correlations in fluvial systems. American Association of Petroleum Geologisits Bulletin, 99, 155–180.CrossRefGoogle Scholar
  53. Ratcliffe, K. T., Wright, A. M., Haalsworth, C., Morton, A. C., Zaitlin, B. A., Potocki, D., et al. (2004). An example of alternative correlation techniques in a low accommodation setting, non-marine hydrocarbon system: The (lower Cretaceous) Mannville Basdal Quartz succession of southern Alberta. American Association of Petroleum Geologists Bulletin, 88, 1419–1432.CrossRefGoogle Scholar
  54. Retallack, G. J. (1997). A colour guide to paleosols (p. 175). Chichester, England: Wiley.Google Scholar
  55. Rollinson, H. (1993). Using geochemical data: Evaluation, presentation, interpretation. Pearson Prentice Hall.Google Scholar
  56. Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635–650.CrossRefGoogle Scholar
  57. Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Cemical Geology, 67, 119–139.CrossRefGoogle Scholar
  58. Sahraeyan, M., Seif, H., Haddad, E. E., Mohammadzadeh, N. (2015). Sedimentology and geochemistry of the Larte Miocence-Pliocence succession in the Fars interior (SW Iran): Implications on depositional and tectonic setting, provenance and paleoweathering in the Zagross Basin (Chap. 5). In M. Ramkumar (Ed.), Chemostratigraphy: Concepts, techniques, and applications (pp. 103–126). Amsterdam: Elsevier.Google Scholar
  59. Scott M. McLennan (1993). Weathering and Global Denudation. The Journal of Geology 101(2), 295–303.Google Scholar
  60. Tan, H., Ma, H., Zhang, X., Lu, H., & Wang, J. (2006). Typical geochemical elements in loess deposits in the Northeastern Tibetan Plateau and its paleoclimatic implications. Acta Geologica Sinica, 80, 110–117.CrossRefGoogle Scholar
  61. Tang, M., McDonough, W. F., & Ash, R. A. (2017). Europium and strontium anomalies in the MORB source mantle. Geochimica et Cosmochiimica Acta, 197, 132–141.CrossRefGoogle Scholar
  62. Thompson, A., Amistadi, M. K., Chadwick, O. A., & Chorover, J. (2013). Fractionation of yttrium and holmium during basaltic soil weathering. Geochemical et Cosmochimica Acta, 119, 18–30.CrossRefGoogle Scholar
  63. Tobia, F. H., Mustafa, B. H. (2016). Geochemistry and mineralogy of the al-rich shale from Baluti Formation, Iraqi Kurdistan region: Implications for weathering and provenance. Arabian Journal of Geosciences, 9(20), 1–23Google Scholar
  64. Tostevin, R., Shields, G. A., Tarbuck, G. M., He, T., Clarckson M. O., & Wood, R. (2016). Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chemical Geology, 438, 146–162.Google Scholar
  65. Tribovillard, N., Algeo, T. J., Baudin, F., & Riboulleau, A. (2012). Analysis of marine environmental conditions based on molybdenum-uranium covariation—Applications to Mesozoic paleoceanography. Chemical Geology, 324, 46–58.CrossRefGoogle Scholar
  66. Verma, S. P., & Armstrong-Altrin, J. S. (2013). New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, 117–133.CrossRefGoogle Scholar
  67. Wilde, P., Quinby-Hunt, M. S., & Erdtmann, B. D. (1996). The whole-rock cerium anomaly: A potential indicator of eustatic sea-level changes in shales of the anoxic facies. Sedimentary Geology, 101, 43–53.CrossRefGoogle Scholar
  68. Wronkiewicz, D. J., & Condie, K. C. (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source area weathering and provenance. Geochemica et Cosmochimica Acta, 51, 2401–2416.CrossRefGoogle Scholar
  69. Yassin, M. A., & Abdullatif, O. (2017). Chemostratigraphic and sedimentological evolution of the Wajid Group (Wajid Sandstone): An outcrop analog study from the Cambrian to Permian, SW Saudi Arabia. Journal of African Earth Sciences, 126, 159–175.CrossRefGoogle Scholar
  70. Zaid, S. D. M. (2012). Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (Lower Miocene), Warda Field, Gulf of Suez, Egypt. Journal of African Earth Sciences, 66–67, 56–71.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Exploration DepartmentSaudi AramcoDhahranSaudi Arabia

Personalised recommendations