Skip to main content

Production of Chemostratigraphic Correlation Schemes

  • Chapter
  • First Online:

Part of the book series: Advances in Oil and Gas Exploration & Production ((AOGEP))

Abstract

Producing a chemostratigraphic correlation scheme is probably the most challenging stage of any chemostratigraphy project. In order to avoid making interpretations based entirely on changes in grain size/lithology, it is recommended that separate schemes are proposed for sandstone and mudrock samples in studies of clastic sediments. In carbonates, no such differentiation is necessary and the data are treated as a whole. After making some final checks on data quality, profiles are plotted for each element, and then for Al-normalised data and geochemical ratios. Most chemostratigraphy projects involve the analysis of 40–55 elements (so profiles are plotted for more than 250 elements and ratios), but the majority of correlation schemes relate to variations in 4–12 key elements or ratios. Hierarchical schemes are developed, based on the recognition of correlative zones, subzones, divisions and subdivisions. In addition to being identified on element/ratio profiles, the geochemical characteristics of these chemozones can also be visualised on binary and ternary diagrams. Using histograms and DFA (Discriminant Function Analysis), it is possible to assign levels of statistical confidence to each chemozone. In recent years, chemostratigraphy has been used very often in conjunction with lithostratigraphy, biostratigraphy, sedimentology and seismic data. By employing such a multidisciplinary approach to reservoir correlation, it is possible to propose more robust correlations of higher resolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akarish, I. M., & El-Gahary, A. M. (2011). Provenance and source area weathering derived from the geochemistry of Pre-Cenomanian sandstones, East Sinai, Egypt. Journal of Applied Sciences, 11(17), 3070–3088.

    Article  Google Scholar 

  • Alibo, D. S., & Nozaki, Y. (1998). Rare earth elements in seawater: Particle association, shale-normalisation, and Ce oxidation. Geochimica et Cosmochimica Acta, 62, 363–372.

    Google Scholar 

  • Armstrong-Altrin, J. S. (2009). Provenance of sands from Cazones, Acapulco and Bahia Kino beaches, Mexico. Revista Mexicana de Ciencias Geologicas, 26, 764–782.

    Google Scholar 

  • Armstrong-Altrin, J. S., Nagarajan, R., Lee, Y. I., Kasper-Zubillaga, J. J., & Cόrdoba-Saldaňa, L. P. (2014). Geochemistry of sands along the San Nicoláa and San Carlos beaches, Gulf of California, Mexico: Implications for provenance. Turkish Journal of Earth Sciences, 23, 533–558.

    Article  Google Scholar 

  • Babechuk, M. G., Widdowson, M., Murphy, M., & Kamber, B. S. (2015). A combined Y/Ho, high field strength element (HFSE) and Nd isotope perspective on basalt weathering, Deccan Traps, India. Chemical Geology, 386, 25–41.

    Article  Google Scholar 

  • Bahlburg, H., & Dobrzinski, N. (2011). A review of the chemical index of alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions. In: E. Arnaud, G. P. Halverson, & G. Shields-Zhou (Eds.), The geological record of neoproterozoic glaciations (Vol. 36, pp. 81–92). Geological Society London, Memoirs.

    Google Scholar 

  • Berry, W. B. N., Quinby-Hunt, M. S., Wilde, P., & Orth, C. J. (1987). Use of the cerium anomaly in black shales—Climatic interpretation in the Ordovician-Silurian boundary interval, Dob’s Linn, Scotland (Vol. 19, 587p). Geological Society of America Annual Meeting

    Google Scholar 

  • Bhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91, 611–627.

    Article  Google Scholar 

  • Bhatia, M. R., & Cook, K. A. W. (1986). Trace element characteristics of graywackes and tectonic discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193.

    Article  Google Scholar 

  • Blanco, G., Germs, G. J. B., Rajesh, H. M., Chemale, F., Jr., Dussin, I. A., & Justino, D. (2011). Provenance and paleogeography of the Nama Group (Ediacaran to early Palaeozoic, Namibia): Petrography, geochemistry and U-Pb detrital zircon geochronology. Precambrian Research, 187, 15–32.

    Article  Google Scholar 

  • Blatt, H., Middleton, G., & Murray, R. (1972). Origin of sedimentary rocks. Prentice Hall, New Jersey. Herron, M.M., 1988. Geochemical classification of terrigenous sands and shales from core log data. Journal of Sedimentary Petrology, 58, 820–829.

    Google Scholar 

  • Bokhorst, M. P., Beets, C. J., Markovic, S. B., Gerasimenko, N. P., Matviishina, Z. N., & Frechen, M. (2009). Pedo-chemical climate proxies in Late Pleistocene Serbian-Ukranian loess sequences. Quaternary International, 198, 113–123.

    Article  Google Scholar 

  • Buggle, B., Glaser, B., Hambach, U., Gerasimenko, N., & Markovic, S. (2011). An evaluation of geochemical weathering indices in loess-paleosol studies. Quaternary International, 240, 12–21.

    Article  Google Scholar 

  • Caracciolo, L., Von Eynatten, H., Tolosana-Delgado, R., Critelli, S., Manetti, P., & Marchev, P. (2012). Petrological, geochemical and statistical analysis of Eocence-Oligocene sandstones of the Western Thrace Basin, Greece and Bulgaria. Journal of Sedimentary Research, 82, 482–498.

    Article  Google Scholar 

  • Chen, J., An, Z., & Head, J. (1999). Variation of the Rb/Sr ratios in the loess-paleosol sequences of Central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quaternary Research, 51, 215–219.

    Article  Google Scholar 

  • Cox, R., Lowe, D. R., & Cullers, R. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59(14), 2919–2940.

    Google Scholar 

  • Craigie, N. W. (2015a). Applications of chemostratigraphy in Cretaceous sediments encountered in the North Central Rub’al-Khali Basin, Saudi Arabia. Journal of African Earth Sciences, 104, 27–42.

    Article  Google Scholar 

  • Craigie, N. W. (2015b). Applications of chemostratigraphy in Middle Jurassic unconventional reservoirs in eastern Saudi Arabia. GeoArabia, 20(2), 79–110.

    Google Scholar 

  • Craigie, N. W., Breuer, P., & Khidir, A. (2016a). Chemostratigraphy and biostratigraphy of Devonian, carboniferous and Permian sediments encountered in eastern Saudi Arabia: An integrated approach to reservoir correlation. Marine and Petroleum Geology, 72, 156–178.

    Article  Google Scholar 

  • Craigie, N. W., & Rees, A. J. (2016). Chemostratigraphy of glaciomarine sediments in the Sarah Formation, northwest Saudi Arabia. Journal of African Earth Sciences, 117, 263–284.

    Article  Google Scholar 

  • Craigie, N. W., Rees, A., MacPherson, K., & Berman, S. (2016b). Chemostratigraphy of the Ordovician Sarah Formation, North-West Saudi Arabia: An integrated approach to reservoir correlation. Marine and Petroleum Geology, 77, 1056–1080.

    Article  Google Scholar 

  • Ding, Z. L., Sun, J. M., Yang, S. L., & Liu, T. S. (2001). Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimatic change. Geochimica et Cosmochimica Acta, 65(6), 901–913.

    Article  Google Scholar 

  • Elderfield, H., & Greaves, M. J. (1982). The rare earth elements in seawater. Nature, 296, 214–219.

    Article  Google Scholar 

  • Ellis, D. V., & Singer, M. (2007). Well logging for earth scientists: Dordrecht (p. 692p). The Netherlands: Springer Science and Business Media B.V.

    Book  Google Scholar 

  • Englund, J. O., & Jorgensen, P. (1973). A chemical classification system for argillacoues sediments and factors affecting their composition. Geologiska Föreningen i Stockholm Förhandlingar, 95, 72–80.

    Article  Google Scholar 

  • Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 63, 921–924.

    Article  Google Scholar 

  • Garzanti, E., Padoan, M., Andὸ, S., Resentini, A., Vezzoli, G., & Lustrino, M. (2013). Weathering and relative durability of detrital minerals in equatorial climate: Sand petrology and geochemistry in the East African Rift. The Journal of Geology, 121, 547–580.

    Article  Google Scholar 

  • Garzanti, E., & Resentini, A. (2016). Provenance control on chemical indices of weathering (Taiwan river sands). Sedimentary Geology, 336, 81–95.

    Article  Google Scholar 

  • Ghosh, S., Sarker, S., & Ghosh, P. (2012). Petrography and major element geochemistry of the PermoTriassic sandstones, central India: implications for provenance in an intracratonic pull-apart basin. Journal of Asian Earth Sciences, 43, 207–240.

    Article  Google Scholar 

  • Harnois, L. (1988). The CIW index: A new chemical index of weathering. Sedimentary Geology, 55, 319–322.

    Article  Google Scholar 

  • Haskin, L. A., Helmke, P. A., Paster, T. P., & Allen, R. O. (1971). Rare earths in meteoric, terrestrial, and lunar matter. In A. Brunfelt, E. Steinnes (Eds.), Activation analysis in geochemistry and cosmochemistry. Proceedings of NATO conference on activation analysis in geochemistry (pp. 201–218). Oslo: Universitesforlaget.

    Google Scholar 

  • Haskin, L. A., Wildeman, T. R., & Haskin, M. A. (1968). An accurate procedure for the determination of the rare earths by neutron activation. Journal of radioanalytical chemistry, 1, 337–348.

    Article  Google Scholar 

  • Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58, 820–829.

    Google Scholar 

  • Hildred, G., Ratcliffe, A., Schmidt, K. (2011). Application of inorganic whole-rock geochemistry to shale resource plays: An example from the Eagle Ford shale (pp. 31–38). Texas., Houston: Geological Society Northsiders Luncheon Meeting, Tuesday, April 19, 2011, Houston Geological Society Bulletin.

    Google Scholar 

  • Holmes, N., Atkin, D., Mahdi, S., & Ayress, M. (2015). Integrated biostratigraphy and chemical stratigraphy in the development of a reservoir-scale stratigraphic framework for the Sea Lion Field area, North Falkland Basin. Petroleum Geoscience, 21, 171–182.

    Article  Google Scholar 

  • Hurst, A., & Morton, A. (2014). Provenance models: The role of sandstone mineral-chemical stratigraphy. In R. A. Scott, H. R. Smyth, A. C. Morton & N. Richardson (Eds.) (Vol. 386, pp. 7–26). Geological Society Special Publications.

    Google Scholar 

  • Kocsis, L., Gheerbrant, E., Mouflih, M., Cappetta, H., Ulianov, A., Chiaradia, M., & Bardet, N. (2016). Gradual changes in upwelled seawater conditions (redox, pH) from the late Cretaceous through early Paleogene at the northwest coast of Africa: Negative Ce anomaly trend recorded in fossil bio-apatite. Chemical Geology, 421, 44–54.

    Google Scholar 

  • Liu, Y. G., Miah, M. R. U., & Schmitt, R. A. (1987). Cerium: A chemical tracer for paleo-oceanic redox conditions. Geochimica et Cosmochimica Acta, 52, 1361–1371.

    Article  Google Scholar 

  • Lowey, G. W. (2015). Element/aluminum ratios in chemostratigraphy: A dubious normalization resulting in spurious correlations. Geoconvention 2015, New Horizons 4 pp.

    Google Scholar 

  • Madhavaraju, J., Hussain, S. M., Ugeswan, J., Nagarajan, R., Ramasamy, S., & Mahalakshmi, P. (2015). Paleo-redox conditions of the Albian-Danian carbonate rocks of the Cauvery Basin, south India: Implications for chemostratigraphy. In M. Ramkumar (Ed.), Chemostratigraphy—Concepts, techniques and application (pp. 247–271). Amsterdam: Elsevier.

    Google Scholar 

  • Mongelli, G., Sinisi, R., Mameli, P., & Oggiano, G. (2015). Ce anomalies and trace element distribution in Sardinian lithiophorite-rich Mn concentration. Journal of Geochemical Exploration, 153, 88–96.

    Article  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.

    Article  Google Scholar 

  • North, C. P., Hole, M. J., & Jones, D. G. (2005). Geochemical correlation in deltaic successions: A reality check. Geological Society of America Bulletin, 117(5/6), 620–632.

    Article  Google Scholar 

  • Pearce, J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace elements discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983.

    Article  Google Scholar 

  • Pearce, T. J., Martin, J. H., Cooper, D., & Wray, D. S. (2010). Chemostratigraphy of upper carboniferous (Pennsylvanian) sequences from the southern North Sea (United Kingdom). In K. T. Ratcliffe, & B. A. Zaitlin (Eds.), Modern alternative stratigraphic techniques; Theory and case histories (pp. 109–129). SEPM Special Publication No. 94.

    Google Scholar 

  • Pearce, T. J., McLean, D., Wright, D. K., Jeans, C. J., & Means, E. W. (2005). Stratigraphy of the upper carboniferous schooner formation, southern North Sea: Chemostratigraphy, mineralogy, palynology and Sm-Nd isotope analysis. In J. D. Collinson, D. W. Evans, D. W. Holliday, N. S. Jones (Eds.), Carboniferous hydrocarbon geology: The southern North Sea and surrounding onshore areas (Vol. 7, pp. 165–182). Yorkshire Geological Society, Occasional Publications series.

    Google Scholar 

  • Pearce, T. J., Wray, D. S., Ratcliffe, K. T., Wright, D. K., & Moscariello, A. (2005). Chemostratigraphy of the upper carboniferous schooner formation, southern North Sea. In J. D. Collinson, D. J. Evans, D. W. Holliday, & M. S. Jones (Eds.), Carboniferous hydrocarbon geology: The southern north sea and surrounding onshore areas (Vol. 7, pp. 147–164). Yorkshire Geological Society, Occasional Publications series.

    Google Scholar 

  • Pettijohn, F. J., Potter, P. E., & Siever, R. (1972). Sand and sandstones. New York: Springer.

    Google Scholar 

  • Potter, P. E. (1978). Petrology and chemistry of modern big river sands. Journal of Geology, 86, 423–449.

    Article  Google Scholar 

  • Ramkumar, M. (2015). Toward standardization of terminologies and recognition of chemostratigraphy as a formal stratigraphic method. In M. Ramkumar (Ed.), Chemostratigraphy—Concepts, techniques, and applications (Chap. 1, pp. 1–22). Amsterdam: Elsevier.

    Google Scholar 

  • Ratcliffe, K. T., Morton, A. C., & Ritcey, D. H. (2007). Whole-rock geochemistry and heavy mineral analysis as petroleum exploration tools in the Bowser and Sustut basins, British Columbia, Canada. Bulletin of Canadian Petroleum Geology, 55, 320–333.

    Article  Google Scholar 

  • Ratcliffe, K. T., Wilson, A., Payenberg, T., Rittersbacher, A., Hildred, G. V., & Flint, S. S. (2015). Ground trothing chemostratigraphic correlations in fluvial systems. American Association of Petroleum Geologisits Bulletin, 99, 155–180.

    Article  Google Scholar 

  • Ratcliffe, K. T., Wright, A. M., Haalsworth, C., Morton, A. C., Zaitlin, B. A., Potocki, D., et al. (2004). An example of alternative correlation techniques in a low accommodation setting, non-marine hydrocarbon system: The (lower Cretaceous) Mannville Basdal Quartz succession of southern Alberta. American Association of Petroleum Geologists Bulletin, 88, 1419–1432.

    Article  Google Scholar 

  • Retallack, G. J. (1997). A colour guide to paleosols (p. 175). Chichester, England: Wiley.

    Google Scholar 

  • Rollinson, H. (1993). Using geochemical data: Evaluation, presentation, interpretation. Pearson Prentice Hall.

    Google Scholar 

  • Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635–650.

    Article  Google Scholar 

  • Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Cemical Geology, 67, 119–139.

    Article  Google Scholar 

  • Sahraeyan, M., Seif, H., Haddad, E. E., Mohammadzadeh, N. (2015). Sedimentology and geochemistry of the Larte Miocence-Pliocence succession in the Fars interior (SW Iran): Implications on depositional and tectonic setting, provenance and paleoweathering in the Zagross Basin (Chap. 5). In M. Ramkumar (Ed.), Chemostratigraphy: Concepts, techniques, and applications (pp. 103–126). Amsterdam: Elsevier.

    Google Scholar 

  • Scott M. McLennan (1993). Weathering and Global Denudation. The Journal of Geology 101(2), 295–303.

    Google Scholar 

  • Tan, H., Ma, H., Zhang, X., Lu, H., & Wang, J. (2006). Typical geochemical elements in loess deposits in the Northeastern Tibetan Plateau and its paleoclimatic implications. Acta Geologica Sinica, 80, 110–117.

    Article  Google Scholar 

  • Tang, M., McDonough, W. F., & Ash, R. A. (2017). Europium and strontium anomalies in the MORB source mantle. Geochimica et Cosmochiimica Acta, 197, 132–141.

    Article  Google Scholar 

  • Thompson, A., Amistadi, M. K., Chadwick, O. A., & Chorover, J. (2013). Fractionation of yttrium and holmium during basaltic soil weathering. Geochemical et Cosmochimica Acta, 119, 18–30.

    Article  Google Scholar 

  • Tobia, F. H., Mustafa, B. H. (2016). Geochemistry and mineralogy of the al-rich shale from Baluti Formation, Iraqi Kurdistan region: Implications for weathering and provenance. Arabian Journal of Geosciences, 9(20), 1–23

    Google Scholar 

  • Tostevin, R., Shields, G. A., Tarbuck, G. M., He, T., Clarckson M. O., & Wood, R. (2016). Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chemical Geology, 438, 146–162.

    Google Scholar 

  • Tribovillard, N., Algeo, T. J., Baudin, F., & Riboulleau, A. (2012). Analysis of marine environmental conditions based on molybdenum-uranium covariation—Applications to Mesozoic paleoceanography. Chemical Geology, 324, 46–58.

    Article  Google Scholar 

  • Verma, S. P., & Armstrong-Altrin, J. S. (2013). New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, 117–133.

    Article  Google Scholar 

  • Wilde, P., Quinby-Hunt, M. S., & Erdtmann, B. D. (1996). The whole-rock cerium anomaly: A potential indicator of eustatic sea-level changes in shales of the anoxic facies. Sedimentary Geology, 101, 43–53.

    Article  Google Scholar 

  • Wronkiewicz, D. J., & Condie, K. C. (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source area weathering and provenance. Geochemica et Cosmochimica Acta, 51, 2401–2416.

    Article  Google Scholar 

  • Yassin, M. A., & Abdullatif, O. (2017). Chemostratigraphic and sedimentological evolution of the Wajid Group (Wajid Sandstone): An outcrop analog study from the Cambrian to Permian, SW Saudi Arabia. Journal of African Earth Sciences, 126, 159–175.

    Article  Google Scholar 

  • Zaid, S. D. M. (2012). Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (Lower Miocene), Warda Field, Gulf of Suez, Egypt. Journal of African Earth Sciences, 66–67, 56–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Craigie .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Craigie, N. (2018). Production of Chemostratigraphic Correlation Schemes. In: Principles of Elemental Chemostratigraphy. Advances in Oil and Gas Exploration & Production. Springer, Cham. https://doi.org/10.1007/978-3-319-71216-1_4

Download citation

Publish with us

Policies and ethics