Sampling, Sample Preparation and Analytical Techniques

  • Neil Craigie
Part of the Advances in Oil and Gas Exploration & Production book series (AOGEP)


Very little information has been published on sampling and sample preparation procedures, yet these are paramount to the success of chemostratigraphy as, without good quality data, it is not possible to produce robust chemostratigraphic schemes. This is especially true of studies involving the analysis of cuttings samples, which have to be washed, sieved, meticulously ‘picked’ and ground prior to analysis. Core and field outcrop samples are simply described and then ground. The principal analytical techniques used to acquire inorganic geochemical data are ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry), ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) and XRF (X-ray Fluorescence). For the best quality data acquired for the largest number of elements, it is recommended that a combination of ICP-OES and ICP-MS are used. The XRF technique produces data for a lesser number of elements, but can be useful where rapid analysis of samples is required. Irrespective of the analytical technique used to acquire data, however, it is important to check the results for accuracy (closeness of result to ‘known’ values of particular elements), precision (repeatability of results) and detection limits, before the data can be utilized for chemostratigraphic purposes.


  1. Anderson, R., Bridges, J. C., Williams, A., Edgar, L., Ollila, A., Williams, J., et al. (2015). ChemCam results from the Shaler outcrop in Gale crater, Mars. Icarus, 249, 2–21.CrossRefGoogle Scholar
  2. Anderson, R. B., Morris, R., Clegg, S. M., Bell, J., Wiens, R. C., Humphries, S. D., et al. (2011). The influence of multivariate analysis methods and target grain size on the accuracy of remote quantitative chemical analysis of rocks using laser induced breakdown spectroscopy. Icarus, 215, 608–627.CrossRefGoogle Scholar
  3. Beckhoff, B., Kanngieber, B., Langhohh, N., Wedell, R., & Wolff, H. (2006). Handbook of practical X-ray fluorescence analysis. New York: Springer.CrossRefGoogle Scholar
  4. Clegg, S., Sklute, E., Dyar, M., Barefield, J., & Wiens, R. (2009). Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 79–88.CrossRefGoogle Scholar
  5. Craigie, N. W. (2015a). Applications of chemostratigraphy in Middle Jurassic unconventional reservoirs in eastern Saudi Arabia. GeoArabia, 20(2), 79–110.Google Scholar
  6. Craigie, N. W. (2015b). Chemostratigraphy of the Silurian Qusaiba Member, Easatern Saudi Arabia. Journal of African Earth Sciences, 113, 12–34.CrossRefGoogle Scholar
  7. Flood, R. P., Bloemsa, M. R., Weltje, G. J., Barr, I. D., O’Rourke, S. M., Turner, J. N., et al. (2016). Compositional data analysis of Holocene sediments from the west Bengal Sundarbans, India: Geochemical proxies fro grain-size variability in a delta environment. Applied Geochemistry, 75, 222–235.CrossRefGoogle Scholar
  8. Jarvis, I. (1991). Sample preparation for ICP-MS. In K. E.Jarvis, A. L. Gray, & S. Houk (Eds.), Handbook of inductively coupled plasma-mass spectrometry (pp. 172–224). Blackie, Glasgow.Google Scholar
  9. Jarvis, I., & Jarvis, K. E. (1992). Plasma spectrometry in the earth sciences: techniques, applications and future trends. Chemical Geology, 95, 1–33.CrossRefGoogle Scholar
  10. Jochum, K. P., & Hofman, A. W. (1989). Fingerprinting geological material using SSMS—comment. Chemical Geology, 75, 249–251.CrossRefGoogle Scholar
  11. Kelloway, S., Ward, C. R., Marjo, C. E., Wainwright, I. E., & Cohen, D. R. (2014). Quantitative chemical profiling of coal using core-scanning X-ray fluorescence techniques. International Journal of Coal Geology, 128–129, 55–67.CrossRefGoogle Scholar
  12. Kronberg, B. I., Murray, F. H., Daddar, R., & Brown, J. R. (1988). Fingerprinting geological materials using SSMS. Chemical Geology, 68, 351–359.CrossRefGoogle Scholar
  13. Longoni, A., Fiorini, C., Leutenegger, P., Sciuti, S., Fronterotta, G., Struder, L., et al. (1998). A portable XRF spectrometer for non-destructive analysis in archaeometry. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 409, 407–409.CrossRefGoogle Scholar
  14. Madhavaraju, J. (2015). Geochemistry of late cretaceous sedimentary rocks of the Cauvery Basin, South India: constraints on paleoweathering, provenance, and end cretaceous environments. In M. Ramkumar (Ed.), Chemostratigraphy: Concepts, techniques and applications. Amsterdam: Elsevier.Google Scholar
  15. Muecke, G.K. (1980). Neutron activation analysis in the geosciences. Mineralogical Association of Canada Short Course Handbook.Google Scholar
  16. Pearce, T. J., Besley, B. M., Wray, D. S., & Wright, D. K. (1999). Chemostratigraphy: a method to improve interwell correlation in barren sequences—a case study using inshore Duckmantian/Stephanian sequences (West Midlands, UK). Sedimentary Geology, 124, 197–220.CrossRefGoogle Scholar
  17. Pearce, T. J., Wray, D. S., Ratcliffe, K. T., Wright, D. K., & Moscariello, A. (2005). Chemostratigraphy of the upper carboniferous schooner formation, southern North Sea. In J. D. Collinson, D. J. Evans, D. W. Holiday, N. S. Jones (Eds.), Carboniferous Hydrocarbon geology: The southern North Sea and surrounding inshore areas (Vol. 7, pp. 147–164). Yorkshire Geological Society, Occasional Publication Series.Google Scholar
  18. Price, W. J. (1972). Analytical atomic absorption spectrometry. London: Heyden.Google Scholar
  19. Rollinson, H. (1993). Using geochemical data: Evaluation, presentation, interpretation.Google Scholar
  20. Struder, L., Lechner, P., & Leutenegger, P. (1998). Silicon drift detector—The key to new experiments. Naturwissenschaften, 85, 539–543.CrossRefGoogle Scholar
  21. Taylor, S. R., & Gordon, M. P. (1977). Geochemical applications of spark-source mass spectrography, III. Element sensitivity precision and accuracy. Geochimica et Cosmochimica Acta, 41, 1375–1380.CrossRefGoogle Scholar
  22. Totland, M., Jarvis, I., & Jarvis, K. E. (1992). An assessment of dissolution techniques for the analysis of geological samples by plasma spectrometry. Chemical Geology, 95(1–2), 35–62.Google Scholar
  23. Tucker, J. M., Dyar, M. D., Schaefer, M. W., Clegg, S. M., & Wiens, R. C. (2010). Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis. Chemical Geology, 277, 137–148.CrossRefGoogle Scholar
  24. Usman, A. and Meehan, D.N., 2016. Unconventional Oil and Gas Resources: Exploitation and Development. CRC Press, 860pp.Google Scholar
  25. Weltje, G. J., & Tjallingii, R. (2008). Calibration of XRF core scanners for quantitative geochemical logging of sediment cores; theory and application. Earth and Planetary Science Letters, 274, 423–438.CrossRefGoogle Scholar
  26. Weltje, G. J., Bloemsma, M. R., Tjallingii, R., Heslop, D., Rӧhl, U., & Croudace, I.W. (2015). Prediction of geochemical composition from XRF core scanner data: A new multivariate approach including automatic selection of calibration samples and quantification of uncertainties. In I. W. Croudace, & R.G. Rothwell (Eds.), Micro XRF studies of sediment cores: Applications of a non-destructive too for the environmental sciences (pp. 507–534). Springer, Dordrecht, NL, (Developments in Paleoenvironmental Research, 17).Google Scholar
  27. Wright, A. M., Spain, D., & Ratcliffe, K. T. (2010). Application of inorganic whole-rock geochemistry of shale resource plays. Paper presented at Canadian Unconventional Resources and international petroleum conference held in Calgary, Alberta.Google Scholar
  28. Young, K. E., Evans, C. A., Hodges, K. V., Bleacher, J. E., & Graff, T. G. (2016). A review of the handheld X-ray fluorescence spectrometer as a tool for field geologic investigations on Earth and planetary surface exploration. Applied Geochemistry, V, 72, 77–87.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Exploration DepartmentSaudi AramcoDhahranSaudi Arabia

Personalised recommendations