Skip to main content

The Living Soil: Biodiversity and Functions

  • Chapter
  • First Online:
The Soils of Ireland

Part of the book series: World Soils Book Series ((WSBS))

Abstract

Soil biodiversity encompasses an enormous array of life on the planet. Soil organisms are essential for most processes and functions in the soil. Soil biological knowledge is critical for understanding functions such as nutrient supply to plants, carbon sequestration and greenhouse gas emissions, all of which are key to meeting the global challenges of food security and climate change mitigation. Soil microorganisms include a wide array of bacterial, archaeal and eukaryotic taxa. Microbes are extremely diverse and abundant, with up to 10 billion microorganisms predicted in a single gram of soil. Nematodes provide a good case study of a soil faunal group that encompasses all feeding habits within their own taxonomic group. Their different feeding habits mean that nematodes provide many and different connections in soil food webs. Microarthropods are discussed, as representing a well-studied soil animal group in Ireland in terms of their community ecology and biogeography, with several species of the Mesostigmata identified. Knowledge of larger animals such as earthworms is more complete, with 27 species recorded from Ireland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arroyo J, O’Connell T, Bolger T (2017) Oribatid mites (Acari: Oribatida) recorded from Ireland: Catalogue, historical records, species habitats and geographical distribution, combinations, variations and synonyms. Zootaxa 4328:1 https://doi.org/10.11646/zootaxa.4328.1

  • Bardgett R (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford, p 242

    Book  Google Scholar 

  • Blackith RE, Good JA (1991) Protura in Ireland. Bull Irish Biogeograph Soc 14:84–89

    Google Scholar 

  • Bolger T, Curry JP (1980) Effects of cattle slurry on soil arthropods in grassland. Pedobiologia 20:246–253

    Google Scholar 

  • Bolger T, Curry JP (1984) Influences of pig slurry on soil microarthropods in grassland. Rev Écol Biol Sol 21:269–281

    Google Scholar 

  • Bolger T, Schmidt O, Purvis G, Curry JP (2002) The biodiversity, function and management of soil invertebrate populations. In: Convery F, Feehan J (eds) Achievement and Challenge: Rio + 10 and Ireland. University College Dublin, The Environmental Institute, pp 2–10

    Google Scholar 

  • Bouffaud ML, Creamer RE, Stone D, Plassart P, van Tuinen D, Lemanceau P, Wipf D, Redecker D (2016) Indicator species and co-occurrence in communities of arbuscular mycorrhizal fungi at the European scale. Soil Biol Biochem 103:464–470

    Article  CAS  Google Scholar 

  • Brennan FP, Abram F, Chinalia FA, Richards KG, O’Flaherty V (2010a) Characterization of environmentally persistent Escherichia coli isolates leached from an Irish soil. Appl Environ Microbiol 76:2175–2180

    Google Scholar 

  • Brennan FP, O’Flaherty V, Kramers G, Grant J, Richards KG (2010b) Long-term persistence and leaching of Escherichia coli in temperate maritime soils. Appl Environ Microbiol 76:1449–1455

    Google Scholar 

  • Brennan FP, Moynihan E, Griffiths BS, Hillier S, Owen J, Pendlowski H, Avery LM (2014) Clay mineral type effect on bacterial enteropathogen survival in soil. Sci Total Env 468–469:302–305

    Article  Google Scholar 

  • Cawley M (2009) New records for Irish false-scorpions (Arachnida: Pseudoscorpiones), also incorporating a county checklist. Bull Irish Biogeograph Soc 33:99–114

    Google Scholar 

  • Coleman DC, Crossley DA Jr, Hendrix PF (2004) Fundamentals of soil ecology, 2nd edn. Elsevier, Amsterdam, p 386

    Google Scholar 

  • Courtney R, Feeney E, O’Grady A (2014) An ecological assessment of rehabilitated bauxite residue. Ecol Engineer 73:373–379

    Article  Google Scholar 

  • Creamer RE, Hannula SE, Leeuwen JPV, Stone D, Rutgers M, Schmelz RM, de Ruiter PC, Hendriksen NB, Bolger T, Bouffaud ML, Buee M, Carvalho F, Costa D, Dirilgen T, Francisco R, Griffiths BS, Griffiths R, Martin F, da Silva PM, Mendes S, Morais PV, Pereira C, Philippot L, Plassart P, Redecker D, Römbke J, Sousa JP, Wouterse M, Lemanceau P (2016) Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Appl Soil Ecol 97:112–124

    Article  Google Scholar 

  • Curry JP (1969) The qualitative and quantitative composition of the fauna of an old grassland site at Celbridge, Co. Kildare. Soil Biol Biochem 1:219–227

    Article  Google Scholar 

  • Curry JP (1994) Grassland invertebrates: ecology, influence on soil fertility and effects on plant growth. Chapman & Hall, London. 437 pp

    Google Scholar 

  • Curry JP, Schmidt O (2006) Long-term establishment of earthworm populations in grassland on reclaimed industrial cutaway peatland in Ireland. Suo: Mires Peat 57:65–70

    Google Scholar 

  • Curry JP, Byrne D, Schmidt O (2002) Intensive cultivation can drastically reduce earthworm populations in arable land. Eur J Soil Biol 38:127–130

    Article  Google Scholar 

  • Curry JP, Doherty P, Purvis P, Schmidt O (2008) Relationships between earthworm populations and management intensity in cattle-grazed pastures in Ireland. Appl Soil Ecol 39:58–64

    Article  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509

    Google Scholar 

  • Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F, Simonet P, Hirch PR, Vogel TM (2011) Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 77:1315–1324

    Article  CAS  Google Scholar 

  • Dickinson CH, Dooley M (1969) Fungi associated with Irish peat bogs. Proc R Irish Acad B: Biol Geol Chem Sci 68:109–135

    Google Scholar 

  • Dirilgen T, Arroyo J, Dimmers WJ, Faber J, Stone D, Martins da Silva P, Cavalho F, Schmelz R, Griffiths BS, Francisco R, Creamer RE, Sousa JP, Bolger T (2016) Mite community composition across a European transect and its relationships to variation in other components of soil biodiversity. Appl Soil Ecol 97:86–97

    Article  Google Scholar 

  • Dix E (2017) The role of microarthropods in carbon and nitrogen dynamics in grassland soils. Unpublished Ph.D. thesis, University College Dublin, 266 pp

    Google Scholar 

  • Ernfors M, Brennan F, Richards K, McGeough K, Griffiths BS, Laughlin RJ, Watson CJ, Philippot L, Grant J, Minet E, Moynihan E, Mueller C (2014) The nitrification inhibitor dicyandiamide increases mineralization-immobilization turnover in slurry amended grassland soil. J Agr Sci 152:137–149

    Article  Google Scholar 

  • Evans GO (1982) Observations of the genus Protogamasellus with a description of a new species. Acarologia 23:303–313

    Google Scholar 

  • Fox A, Kwapinski W, Griffiths BS, Schmalenberger A (2014) The role of sulfur—and phosphorus-mobilizing bacteria in biochar-induced growth promotion of Lolium perenne. FEMS Microbiol Ecol 90:78–91

    Google Scholar 

  • Fox A, Gahan J, Ikoyi I, Kwapinski W, O’Sullivan O, Cotter PD, Schmalenberger A (2016) Miscanthus biochar promotes growth of spring barley and shifts bacterial community structures including phosphorus and sulfur mobilizing bacteria. Pedobiologia 59:195–202

    Article  Google Scholar 

  • Gahan J, Schmalenberger A (2014) The role of bacteria and mycorrhiza in plant sulfur supply. Front Plant Sci 5:723. https://doi.org/10.3389/fpls.201400723

    Article  Google Scholar 

  • Gahan J, Schmalenberger A (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. Appl Soil Ecol 89:113–121

    Article  Google Scholar 

  • Griffin CT, Moore JF, Downes MJ (1991) Occurrence of insect parasitic nematodes (Steinernematidae, Heterorhabditidae) in the Republic of Ireland. Nematologica 37:92–100

    Article  Google Scholar 

  • Halbert JN (1915) Clare Island survey. 39. Acaridina ii. Terrestrial and marine Acarina. Proc R Irish Acad 31(39): 45–136

    Google Scholar 

  • Heneghan L, Bolger T (1996) Effects of acid rain components on soil microarthropods: a field manipulation. Pedobiologia 40:413–438

    Google Scholar 

  • Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y, Dudek N, Relman DA, Finstad KM, Amundson R, Thomas BC, Banfield JF (2016) A new view of the tree of life. Nature Microbiol 1:16048. https://doi.org/10.1038/nmicrobiol.2016.48

    Article  CAS  Google Scholar 

  • Jeffery S, Gardi C, Jones A, Montanarella L, Marmo L, Miko L, Ritz K, PĂ©rès G, Römbke J, van der Putten WH (eds) (2010) European atlas of soil biodiversity. European Commission, Publications Office of the European Union, Luxembourg, 128 pp

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Jones CM, Spor A, Brennan FP, Breuil MC, Bru D, Lemanceau P, Griffiths B, Hallin S, Philippot L (2014) Recently identified microbial guild mediates soil N2O sink capacity. Nature Clim Change 4:801–805

    Article  CAS  Google Scholar 

  • Keith AM, Griffin CT, Schmidt O (2009) Predatory soil nematodes (Mononchida) in major land-use types across Ireland. J Natural Hist 43:2571–2577

    Article  Google Scholar 

  • Keith AM, Boots B, Hazard C, Niechoj R, Arroyo J, Bending GD, Bolger T, Breen J, Clipson N, Doohan FM, Griffin CT, Schmidt O (2012) Cross-taxa congruence, indicators and environmental drivers in soils under agricultural and extensive land management. Eur J Soil Biol 49:55–62

    Article  Google Scholar 

  • Keith AM, Schmidt O, McMahon BJ (2016) Soil stewardship as a nexus between Ecosystem Services and One Health. Ecosyst Serv 17:40–42

    Article  Google Scholar 

  • Knietch A, Waschkowitz S, Bowien A, Henne A, Daniel R (2003) Metagenomes of complex microbial consortia derived from different soils as sources for novel genes conferring formation of carbonyls from short-chain polyols on E. coli. J Microbiol Biotechnol 5:46–56

    Google Scholar 

  • Legg G, O’Connor JP (1997) A review of the Irish pseudoscorpions (Arachnida: Pseudoscorpiones). Bull Irish Biogeograph Soc 20:105–117

    Google Scholar 

  • Lillis L, Doyle E, Clipson N (2009) Comparison of DNA- and RNA-based bacterial community structures in soil exposed to 2,4-dichlorophenol. J Appl Microbiol 107:1883–1893

    Article  CAS  Google Scholar 

  • Luxton M (1998) The oribatid and parasitiform mites of Ireland, with particular reference to the work of J. N. Halbert (1872–1948). Bull Irish Biogeograph Soc 22:1–72

    Google Scholar 

  • Massey PA, Creamer RE, Whelan MJ, Ritz K (2016) Insensitivity of soil biological communities to phosphorus fertilization in intensively managed grassland systems. Grass Forage Sci 71:139–152

    Article  Google Scholar 

  • Melody C, Schmidt O (2012) Northward range extension of an endemic soil decomposer with a distinct trophic position. Biol Lett 8:956–959

    Article  Google Scholar 

  • Melody C, Griffiths BS, Dyckmans J, Schmidt O (2016) Stable isotope analysis (δ13C and δ15N) of soil nematodes from four different feeding groups. PeerJ 4:e2372. https://doi.org/10.7717/peerj.2372

    Article  Google Scholar 

  • Moore JF (1977) Studies on occurrence and control of Longidorus and Xiphinema nematodes. Irish J Agr Res 16:301–310

    Google Scholar 

  • MorriĂ«n E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, de Hollander M, Soto RL, Bouffaud ML, BuĂ©e M, Dimmers W, Duyts H, Geisen S, Girlanda M, Griffiths RI, Jørgensen HB, Jensen J, Plassart P, Redecker D, Schmelz RM, Schmidt O, Thomson BC, Tisserant E, Uroz S, Winding A, Bailey MJ, Bonkowski M, Faber JH, Martin F, Lemanceau P, de Boer W, van Veen JA, van der Putten WH (2017) Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Commun 8:14349. https://doi.org/10.1038/NCOMMS14349

    Article  Google Scholar 

  • Moynihan E, Richards K, Ritz K, Tyrrel S, Brennan F (2013) The impact of soil type, biology and temperature on the environmental persistence of non-toxigenic E. coli O157. Biol Env Proc R Irish Acad 113B:41–46

    Google Scholar 

  • Moynihan EL, Richards KG, Brennan FP, Tyrrel SF, Ritz K (2015) Enteropathogen survival in soil from different land-uses is predominantly regulated by microbial community composition. Appl Soil Ecol 89:76–84

    Article  Google Scholar 

  • Muldowney J, Schmidt O (2002) Allolobophora cupulifera TĂ©try (Oligochaeta: Lumbricidae) in Ireland: first records for the British Isles. Megadrilogica 9:29–32

    Google Scholar 

  • Muldowney J, Curry JP, O’Keeffe J, Schmidt O (2003) Relationships between earthworm populations, grassland management and badger density in County Kilkenny, Ireland. Pedobiologia 47:913–919

    Google Scholar 

  • Neher DA (2010) Ecology of plant and free-living nematodes in natural and agricultural soil. Annu Rev Rev Phytopathol 48:371–394

    Article  CAS  Google Scholar 

  • O’Mahony M, Henneberger R, Selvin J, Kennedy J, Doohan F, Marchesi JR, Dobson ADW (2015) Inhibition of the growth of Bacillus subtilis DSM10 by a newly discovered antibacterial protein from the soil metagenome. Bioengineered 6:89–98

    Google Scholar 

  • Orgiazzi A, Bardgett RD, Barrios E, Behan-Pelletier V, Briones MJI, Chotte JL, De Deyn GB, Eggleton P, Fierer N, Fraser T, Hedlund K, Jeffery S, Johnson NC, Jones A, Kandeler E, Kaneko N, Lavelle P, Lemanceau P, Miko L, Montanarella L, Moreira FMS, Ramirez KS, Scheu S, Singh BK, Six J, van der Putten WH, Wall DH (eds) (2016) Global soil biodiversity atlas. European Commission, Publications Office of the European Union, Luxembourg. 176 pp

    Google Scholar 

  • Randall K (2016) The microbial ecology of the soil–plant interface. Unpublished Ph.D. thesis, University College Dublin

    Google Scholar 

  • Rutgers M, Orgiazzi A, Gardi C, Römbke J, Jänsch S, Keith AM, Neilson R, Boag B, Schmidt O, Murchie AK, Blackshaw RP, PĂ©rès G, Cluzeau D, Guernion M, Briones MJI, Rodeiro J, Piñeiro R, DĂ­az-Cosin DJ, Sousa JP, Suhadolc M, Kos I, Krogh PH, Faber JH, Mulder C, Bogte JJ, van Wijnen HJ, Schouten AJ, de Zwart D (2016) Mapping earthworm communities in Europe. Appl Soil Ecol 97:98–111

    Article  Google Scholar 

  • Samad MS, Bakken LR, Nadeem S, Clough TJ, de Klein CAM, Richards KG, Lanigan GJ, Morales SE (2016) High-resolution denitrification kinetics in pasture soils link N2O emissions to pH, and denitrification to C mineralization. PLoS ONE 11:e0151713. https://doi.org/10.1371/journal.pone.0151713

    Article  Google Scholar 

  • Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Secur 4:519–537

    Article  Google Scholar 

  • Sawulski P, Boots B, Clipson N, Doyle E (2015) Differential degradation of polycyclic aromatic hydrocarbon mixtures by indigenous microbial assemblages in soil. Lett Appl Microbiol 61:199–207

    Article  CAS  Google Scholar 

  • Schloss PD, Handlesman J (2003) Biotechnological prospects from metagenomics. Curr Opinion Biotechnol 26:1135–1145

    Google Scholar 

  • Schmidt O, Curry JP (1999) Effects of earthworms on biomass production, nitrogen allocation and nitrogen transfer in wheat–clover intercropping model systems. Plant Soil 214:187–198

    Article  CAS  Google Scholar 

  • Schmidt O, Curry JP, Hackett RA, Purvis G, Clements RO (2001) Earthworm communities in conventional wheat monocropping and low-input wheat–clover intercropping systems. Ann Appl Biol 138:377–388

    Article  Google Scholar 

  • Schmidt O, Dyckmans J, Schrader S (2016) Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates. Biol Lett 12:20150646. https://doi.org/10.1098/rsbl.2015.0646

    Article  Google Scholar 

  • Stromberger ME, Keith AM, Schmidt O (2012) Distinct microbial and faunal communities and translocated carbon in Lumbricus terrestris drilospheres. Soil Biol Biochem 46:155–162

    Google Scholar 

  • Strous M, Fuerts JA, Kramer EHM, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449

    Article  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley and Los Angeles, p 372

    Google Scholar 

  • Tan H, Mooij MJ, Barret M, Hegarty PM, Dobson ADW, O’Gara F (2014) Identification of novel phytase genes from an agricultural soil-derived metagenome. J Microbiol Biotechnol 24:113–118

    Article  CAS  Google Scholar 

  • Thakuria D, Schmidt O, Finan D, Egan D, Doohan FM (2010) Gut wall bacteria of earthworms: a natural selection process. ISME J 4:357–366

    Article  Google Scholar 

  • Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Env Microbiol 7:1985–1995

    Article  CAS  Google Scholar 

  • van Kessel MAHJ, Speth DR, Albertsen M, Nielsen PH, op den Camp HJM, Kartal B, Jetten MSM, LĂĽcker S (2015). Complete nitrification by a single microorganism. Nature 528:555–559

    Google Scholar 

  • Vervoort MTW, Vonk JA, Mooijman PJW, van den Elsen SJJ, van Megen HHB, Veenhuizen P, Landeweert R, Bakker J, Mulder C, Helder J (2012) SSU ribosomal DNA-based monitoring of nematode assemblages reveals distinct seasonal fluctuations within evolutionary heterogeneous feeding guilds. PLoS ONE 7:e47555. https://doi.org/10.1371/journal.pone.0047555

    Article  CAS  Google Scholar 

  • Yeates GW, Ferris H, Moens T, van der Putten WH (2009) The role of nematodes in ecosystems. In: Wilson JW, Kakouli-Duarte T (eds) Nematodes as Environmental Indicators. CAB International, London, pp 1–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmidt, O., Bolger, T., Creamer, R., Brennan, F., Dobson, A.D.W. (2018). The Living Soil: Biodiversity and Functions. In: Creamer, R., O’Sullivan, L. (eds) The Soils of Ireland. World Soils Book Series. Springer, Cham. https://doi.org/10.1007/978-3-319-71189-8_18

Download citation

Publish with us

Policies and ethics