Advertisement

Frege’s Unquestioned Starting Point: Logic as Science

  • Jan Harald AlnesEmail author
Chapter
  • 191 Downloads
Part of the Nordic Wittgenstein Studies book series (NRWS, volume 3)

Abstract

Frege’s conception of science includes three features: (1) a science is applicable to other sciences, or even to itself, (2) a science consists of a more or less rigid system of judgements and (3) a science presupposes elucidations, illustrative examples and a “catch on” among scientists. Together, I label these three features “The scientific Picture”. Both logic and mathematics are included among the sciences and are covered by the scientific picture. As I understand Frege, this picture guides his logical and philosophical reflections. Here it is invoked in a treatment of two well-known and controversial Fregean topics: His claim, often repeated, that the axioms of Begriffsschrift and Grundgesetze are obvious and stand in no need of justification, and his use of a Kantian terminology in classifying judgements as analytic or synthetic, a priori or a posteriori. The most significant consequence of my reading is that it underscores the epistemological nature of Frege’s thinking and, at the same time, downplays a current, and in my mind unfortunate, trend of ascribing to Frege a rather “thick” metaphysics. Towards the end, I discuss different aspects of the notion of a judgment at play in Frege’s discussions: judgement as movement from thought to truth-value and judgement as represented by the judgement-stroke. These aspects point back to the distinction, so nicely illustrated by Frege’s own writings, between a scientist, engaged in scientific research, and a philosopher, explicating the scientific activity and its general presuppositions, respectively.

Keywords

Frege Elucidation Epistemology Logic Logicism Metaphysics Science 

Notes

Acknowledgments

This article is a modified version of the talk “Logic as Substantial Science”, held at the Conference Frege zwischen Dichtung und Wissenschaft, University of Bergen, December 5, 2014. I am grateful to the audience and the organisers of the conference for putting together a stimulating group of scholars and for ensuring an excellent social atmosphere. Although I am thankful to all participants for comments and reflections, I would like to mention three of them in particular. Juliet Floyd gave a most useful response to my talk, and Gisela Bengtsson and Joan Weiner, in addition to verbal responses, wrote comprehensive and quite instructive comments. This improved my line of thought and made possible the transformation of my talk into an article. The editors Gisela Bengtsson and Simo Säätelä suggested several useful improvements during the writing of the final versions.

References

  1. Alnes, J. H. (1999). Sense and Basic Law V in Frege’s logicism. Nordic Journal of Philosophical Logic, 4, 1–30.Google Scholar
  2. Alnes, J. H. (2013). Trekk ved Freges logisisme: Begrep, logisk objekt og Aksiom V. Norsk filosofisk tidsskrift, 48, 243–264.Google Scholar
  3. Bar-Elli, G. (2010). Analyticity and justification in Frege. Erkenntnis, 73, 165–184.CrossRefGoogle Scholar
  4. Benacerraf, P. (1981). Frege: The last logicist. Midwest Studies in Philosophy, 6, 17–36.  https://doi.org/10.1111/j.1475-4975.1981.tb00426.x.CrossRefGoogle Scholar
  5. Carl, W. (1994). Frege’s theory of sense and reference. New York: Cambridge University Press.CrossRefGoogle Scholar
  6. Costreie, S. (2013). Frege’s puzzle and arithmetical formalism: Putting things in context. History and Philosophy of Logic, 34, 207–224.CrossRefGoogle Scholar
  7. Dummett, M. (1981). The interpretation of Frege’s philosophy. Cambridge, MA: Harvard University Press.Google Scholar
  8. Dummett, M. (1991a). Frege: Philosophy of mathematics. Cambridge, MA: Harvard University Press.Google Scholar
  9. Dummett, M. (1991b). The logical basis of metaphysics. London: Duckworth.Google Scholar
  10. Eder, G. (2015). Frege’s ‘On the Foundations of Geometry’ and axiomatic metatheory. Mind, 125, 5–40.  https://doi.org/10.1093/Mind/fzv101.CrossRefGoogle Scholar
  11. Floyd, J. (1998). Frege, semantics, and the double definition stroke. In A. Biletzki & A. Matar (Eds.), The story of analytic philosophy (pp. 141–167). London/New York: Routledge.Google Scholar
  12. Frege, G. (1879a/1972). Begriffsschrift/Conceptual Notation. In G. Frege, Conceptual notation and related articles (pp. 101–204). T. W. Bynum (Ed. & Trans.). Oxford: Oxford University Press.Google Scholar
  13. Frege, G. (1879b/1972). Applications of the “Conceptual Notation”. In G. Frege, Conceptual notation and related articles (pp. 204–209). T. W. Bynum (Ed. & Trans.). Oxford: Oxford University Press.Google Scholar
  14. Frege, G. (1880?/1979). Logic. In G. Frege, Posthumous writings (pp. 1–9). H. Hermes, F. Kambartel, & F. Kaulback (Eds.). Oxford: Basil Blackwell.Google Scholar
  15. Frege, G. (1881/1979). Boole’s logical calculus and the concept-script. In G. Frege, Posthumous writings (pp. 9–47). H. Hermes, F. Kambartel, & F. Kaulback (Eds.). Oxford: Basil Blackwell.Google Scholar
  16. Frege, G. (1882a/1979). Boole’s logical formula-language and my concept-script. In G. Frege, Posthumous writings (pp. 47–53). H. Hermes, F. Kambartel, & F. Kaulback (Eds.). Oxford: Basil Blackwell.Google Scholar
  17. Frege, G. (1882b/1972). On the scientific justification of a conceptual notation. In G. Frege, Conceptual notation and related articles (pp. 83–90). T. W. Bynum (Ed. & Trans.). Oxford: Oxford University Press.Google Scholar
  18. Frege, G. (1883/1972). On the aim of the “Conceptual Notation”. In G. Frege, Conceptual notation and related articles (pp. 90–101). T. W. Bynum (Ed. & Trans.). Oxford: Oxford University Press.Google Scholar
  19. Frege, G. (1884/1968). Die Grundlagen der Arithmetik/The foundations of arithmetic. J. L. Austin (Trans). Oxford: Basil Blackwell.Google Scholar
  20. Frege, G. (1885/1984). On formal theories of arithmetic. In G. Frege, Collected papers on mathematics, logic, and philosophy (pp. 112–122). B. McGuiness (Ed.). Oxford: Basil Blackwell.Google Scholar
  21. Frege, G. (1891/1984). Function and concept. In G. Frege, Collected papers on mathematics, logic, and philosophy (pp. 137–157). B. McGuinness (Ed.). Oxford: Basil Blackwell.Google Scholar
  22. Frege, G. (1892a/1984). Über Sinn und Bedeutung/on sense and meaning. In G. Frege, Collected papers on mathematics, logic, and philosophy (pp. 157–178). B. McGuinness (Ed.). Oxford: Basil Blackwell.Google Scholar
  23. Frege, G. (1892b/1984). On concept and object. In G. Frege, Collected papers on mathematics, logic, and philosophy (pp.182–195). B. McGuinness (Ed.). Oxford: Basil Blackwell.Google Scholar
  24. Frege, G. (1893/1967). Grundgesetze der Arithmetik I. In G. Frege, Grundgesetze der Arithmetik. Hildesheim: Georg Olms Verlagsbuchhandlung. Partly translated in The basic laws of arithmetic. M. Furth (Ed. & Trans.). Berkeley: University of California Press.Google Scholar
  25. Frege, G. (1897a/1984). On Mr. Peano’s conceptual notation and my own. In G. Frege, Collected papers on mathematics, logic, and philosophy (pp. 234–249). B. McGuinness (Ed.). Oxford: Basil Blackwell.Google Scholar
  26. Frege, G. (1897b/1979). Logic. In G. Frege, Posthumous writings (pp. 126–152). H. Hermes, F. Kambartel, & F. Kaulback (Eds.). Oxford: Basil Blackwell.Google Scholar
  27. Frege, G. (1903a/1952). Grundgesetze der Arithmetic II. In G. Frege, Grundgesetze der Arithmetik. Hildesheim: Georg Olms Verlagsbuchhandlung. Partly translated in Translations from the philosophical writings of Gottlob Frege (3rd ed., pp.139–225). P. Geach, & M. Black (Eds.). Totowa, New Jersey: Barnes and Noble.Google Scholar
  28. Frege, G. (1903b/1984). On the foundations of geometry: First series. In G. Frege, Collected papers on mathematics, logic, and philosophy (pp. 273–285). B. McGuinness (Ed.). Oxford: Basil Blackwell.Google Scholar
  29. Frege, G. (1904/1980). Letter to Russell. In G. Frege, Philosophical and mathematical correspondence (pp.160–167). G. Gabriel, H. Hermes, F. Kambartel, C. Thiel, & A. Veraart (Eds.). Oxford: Basil Blackwell.Google Scholar
  30. Frege, G (1906a/1984). On the foundations of geometry: Second series. In G. Frege, Collected papers on mathematics, logic, and philosophy (pp. 293–341). B. McGuinness (Ed.). Oxford: Basil Blackwell.Google Scholar
  31. Frege, G. (1906b/1979). Introduction to logic. In G. Frege, Posthumous writings (pp. 185–203). H. Hermes, F. Kambartel, & F. Kaulback (Eds.). Oxford: Basil Blackwell.Google Scholar
  32. Frege, G. (1906c/1979). A brief survey of my logical doctrines. In G. Frege, Posthumous writings (pp. 197–203). H. Hermes, F. Kambartel, & F. Kaulback (Eds.). Oxford: Basil Blackwell.Google Scholar
  33. Frege, G. (1914/1979). Logic in mathematics. In G. Frege, Posthumous writings (pp. 203–251). H. Hermes, F. Kambartel, & F. Kaulback (Eds.). Oxford: Basil Blackwell.Google Scholar
  34. Frege, G. (1918/1984). Logical investigations. Part I: Thoughts. In G. Frege, Collected papers on mathematics, logic, and philosophy (pp. 351–373). B. McGuinness (Ed.). Oxford: Basil Blackwell.Google Scholar
  35. Frege, G. (1919/1979). Notes for Ludwig Darmstaedter. In G. Frege, Posthumous writings (pp. 253–257). H. Hermes, F. Kambartel, & F. Kaulback (Eds.). Oxford: Basil Blackwell.Google Scholar
  36. Frege, G. (1925/1979). Sources of knowledge and the mathematical natural sciences. In G. Frege, Posthumous writings (pp. 267–275). H. Hermes, F. Kambartel, & F. Kaulback (Eds.). Oxford: Basil Blackwell.Google Scholar
  37. Frege, G. (1926/1984). Logical investigations. Part III: Compound thoughts. In G. Frege, Collected papers on mathematics, logic, and philosophy (pp. 390–406). B. McGuiness (Ed.). Oxford: Basil Blackwell.Google Scholar
  38. Heck, R. (2010). Frege and semantics. In M. Potter & T. Ricketts (Eds.), The Cambridge companion to Frege (pp. 342–379). New York: Cambridge University Press.CrossRefGoogle Scholar
  39. Jeshion, R. (2001). Frege’s notions of self-evidence. Mind, 110, 937–976.CrossRefGoogle Scholar
  40. Jeshion, R. (2004). Frege’s evidence for self-evidence. Mind, 113, 131–138.CrossRefGoogle Scholar
  41. Kant, I. (1996). Critique of pure reason. Indianapolis/Cambridge: Hackett Publishing Company.Google Scholar
  42. Kitcher, P. (1979). Frege’s epistemology. Philosophical Review, 88, 333–355.CrossRefGoogle Scholar
  43. Linnebo, Ø. (2003). Frege’s conception of logic: From Kant to Grundgesetze. Manuscrito, 26, 235–252.Google Scholar
  44. Linnebo, Ø. (2013). Freges oppfatning av logikk: Fra Kant til Grundgesetze. Norsk filosofisk Tidsskrift, 48, 219–230.Google Scholar
  45. MacFarlane, J. (2002). Frege, Kant, and the logic in logicism. The Philosophical Review, 111, 25–65.CrossRefGoogle Scholar
  46. Mahr, B. (2010). On judgements and propositions. Electronic Communications of the EASST, 26, 1–20. http://journal.ub.tu-berlin.de/index.php/eceasst/article/viewFile/347/358. Accessed 23 Mar 2017.Google Scholar
  47. Michaëlis, C. (1880/1972). Review of Frege’s Conceptual Notation. In G. Frege, Conceptual notation and related articles (pp. 212–219). T. W. Bynum (Ed. & Trans.). Oxford: Oxford University Press.Google Scholar
  48. Ricketts, T. (1985). Frege, the Tractatus, and the logocentric predicament. Noûs, 9, 3–15.CrossRefGoogle Scholar
  49. Ricketts, T. (1996). Logic and truths in Frege: I. Proceedings of the Aristotelian Society, Supplementary Volume, 70, 121–140.CrossRefGoogle Scholar
  50. Ricketts, T. (2010). Concepts, objects and the context principle. In M. Potter & T. Ricketts (Eds.), The Cambridge companion to Frege (pp. 149–220). New York: Cambridge University Press.CrossRefGoogle Scholar
  51. Salmon, N. (1986). Frege’s puzzle. Cambridge, MA: The MIT Press.Google Scholar
  52. Schröder, E. (1880/1972). Review of Frege’s Conceptual Notation. In G. Frege, Conceptual notation and related articles (pp. 218–232). T. W. Bynum (Ed. & Trans.). Oxford: Oxford University Press.Google Scholar
  53. Shapiro, S. (2009). We hold these truths to be self-evident: But what do we mean by that? The Review of Symbolic Logic, 2, 175–207.CrossRefGoogle Scholar
  54. Sundholm, G. (2009). A century of judgement and inference: 1837–1936. Some strands in the development of logic. In L. Haaparanta (Ed.), The development of modern logic (pp. 263–318). Oxford: Oxford University Press.CrossRefGoogle Scholar
  55. Weiner, J. (1990). Frege in perspective. Ithaca/London: Cornell University Press.Google Scholar
  56. Weiner, J. (2004). What was Frege trying to prove? A Response to Jeshion. Mind, 112, 115–129.CrossRefGoogle Scholar
  57. Weiner, J. (2010). Understanding Frege’s project. In M. Potter & T. Ricketts (Eds.), The Cambridge companion to Frege (pp. 32–63). New York: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.UiT The Arctic University of NorwayTromsøNorway

Personalised recommendations