Advertisement

Bone Grafting

  • Zeeshan Sheikh
  • Siavash Hasanpour
  • Michael Glogauer
Chapter

Abstract

Successful dental implant placement for restoration of edentulous ridges depends on the quality and quantity of alveolar bone available in all spatial dimensions. There are several surgical grafting techniques used in combination with natural or synthetic materials to achieve alveolar ridge augmentation. The commonly available bone tissue replacement materials include autografts, allografts, xenografts, and alloplasts. Polymers (natural and synthetic) are widely used as barrier membrane materials in guided tissue regeneration (GTR) and guided bone regeneration (GBR) applications. However, there is no single ideal technique or graft material to choose in clinical practice currently. Treatment protocols and materials that involve less invasive and more reproducible vertical and horizontal bone augmentation procedures are actively sought. This chapter focuses on existing surgical techniques, natural tissues, and synthetic biomaterials commonly used for bone grafting in order to successfully restore edentulous ridges with implant-supported prostheses.

References

  1. 1.
    Basker RM, Davenport JC, Thomason JM. Prosthetic treatment of the edentulous patient. Oxford: Wiley; 2011.Google Scholar
  2. 2.
    Albrektsson T, et al. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986;1(1):11–25.PubMedGoogle Scholar
  3. 3.
    Smith DE, Zarb GA. Criteria for success of osseointegrated endosseous implants. J Prosthet Dent. 1989;62(5):567–72.CrossRefPubMedGoogle Scholar
  4. 4.
    Bryant SR, Zarb GA. Outcomes of implant prosthodontic treatment in older adults. J Can Dent Assoc. 2002;68(2):97–102.PubMedGoogle Scholar
  5. 5.
    De Baat C. Success of dental implants in elderly people—a literature review. Gerodontology. 2000;17(1):45–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Esposito M, et al. Interventions for replacing missing teeth: horizontal and vertical bone augmentation techniques for dental implant treatment. The Cochrane Library; 2009.Google Scholar
  7. 7.
    Khoury F, Buchmann R. Surgical therapy of peri-implant disease: a 3-year follow-up study of cases treated with 3 different techniques of bone regeneration. J Periodontol. 2001;72(11):1498–508.CrossRefPubMedGoogle Scholar
  8. 8.
    Van der Weijden F, Dell’Acqua F, Slot DE. Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review. J Clin Periodontol. 2009;36(12):1048–58.CrossRefPubMedGoogle Scholar
  9. 9.
    Tallgren A. The continuing reduction of the residual alveolar ridges in complete denture wearers: a mixed-longitudinal study covering 25 years. J Prosthet Dent. 2003;89(5):427–35.CrossRefPubMedGoogle Scholar
  10. 10.
    Bernstein S, et al. Vertical bone augmentation: where are we now? Implant Dent. 2006;15(3):219–28.CrossRefPubMedGoogle Scholar
  11. 11.
    Sheikh Z, Glogauer M. Successful ridge augmentation: the challenge of periodontal tissue engineering. EC Dent Sci. 2015;2:216–8.Google Scholar
  12. 12.
    Tolman DE. Advanced residual ridge resorption: surgical management. Int J Prosthodont. 1993;6(2):118–25.PubMedGoogle Scholar
  13. 13.
    McAllister BS, Haghighat K. Bone augmentation techniques. J Periodontol. 2007;78(3):377–96.CrossRefPubMedGoogle Scholar
  14. 14.
    Sheikh Z, Sima C, Glogauer M. Bone replacement materials and techniques used for achieving vertical alveolar bone augmentation. Materials. 2015;8(6):2953–93.CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Sheikh Z, et al. Biodegradable materials for bone repair and tissue engineering applications. Materials. 2015;8(9):5744–94.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bilezikian JP, Raisz LG, Martin TJ. Principles of bone biology: two-volume set. San Diego: Academic; 2008.Google Scholar
  17. 17.
    Krishnan V, et al. Parathyroid hormone bone anabolic action requires Cbfa1/Runx2-dependent signaling. Mol Endocrinol. 2003;17(3):423–35.CrossRefPubMedGoogle Scholar
  18. 18.
    Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 2002;16(12):1446–65.CrossRefPubMedGoogle Scholar
  19. 19.
    Wu X, Shi W, Cao X. Multiplicity of BMP signaling in skeletal development. Ann N Y Acad Sci. 2007;1116:29–49.CrossRefPubMedGoogle Scholar
  20. 20.
    Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4(8):638–49.CrossRefPubMedGoogle Scholar
  21. 21.
    Lacey DL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–76.CrossRefPubMedGoogle Scholar
  22. 22.
    Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am. 2002;84(3):454–64.CrossRefPubMedGoogle Scholar
  23. 23.
    Sheikh Z, et al. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials. 2015;8(9):5671–701.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Urist MR. Bone transplants and implants. In: Urist MR, editor. Fundamental and clinical bone physiology. Philadelphia: JB Lippincott; 1980. p. 331–68.Google Scholar
  25. 25.
    Cornell CN, Lane JM. Current understanding of osteoconduction in bone regeneration. Clin Orthop Relat Res. 1998;355:S267–73.CrossRefGoogle Scholar
  26. 26.
    Mastrogiacomo M, et al. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials. 2006;27(17):3230–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Boyne PJ. Bone induction and the use of HTR polymer as a vehicle for osseous inductor materials. Compend Suppl. 1988;10:S337–41.Google Scholar
  28. 28.
    McCarthy JG, et al. Distraction osteogenesis of the craniofacial skeleton. Plast Reconstr Surg. 2001;107(7):1812–27.CrossRefPubMedGoogle Scholar
  29. 29.
    Davies J, Turner S, Sandy JR. Distraction osteogenesis—a review. Br Dent J. 1998;185(9):462–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Ilizarov GA. Basic principles of transosseous compression and distraction osteosynthesis. Ortop Travmatol Protez. 1971;32(11):7–15.PubMedGoogle Scholar
  31. 31.
    Uckan S, Oguz Y, Bayram B. Comparison of intraosseous and extraosseous alveolar distraction osteogenesis. J Oral Maxillofac Surg. 2007;65(4):671–4.CrossRefPubMedGoogle Scholar
  32. 32.
    Polo WC, et al. Posterior mandibular alveolar distraction osteogenesis utilizing an extraosseous distractor: a prospective study. J Periodontol. 2005;76(9):1463–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Chiapasco M, et al. Alveolar distraction osteogenesis for the correction of vertically deficient edentulous ridges: a multicenter prospective study on humans. Int J Oral Maxillofac Implants. 2004;19(3):399–407.PubMedGoogle Scholar
  34. 34.
    Hidding J, Lazar F, Zoller JE. Initial outcome of vertical distraction osteogenesis of the atrophic alveolar ridge. Mund Kiefer Gesichtschir. 1999;3(Suppl 1):S79–83.CrossRefPubMedGoogle Scholar
  35. 35.
    Urbani G, et al. Distraction osteogenesis to achieve mandibular vertical bone regeneration: a case report. Int J Periodontics Restorative Dent. 1999;19(4):321–31.PubMedGoogle Scholar
  36. 36.
    Van Strijen P, et al. Complications in bilateral mandibular distraction osteogenesis using internal devices. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;96(4):392–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Garcia AG, et al. Minor complications arising in alveolar distraction osteogenesis. J Oral Maxillofac Surg. 2002;60(5):496–501.CrossRefPubMedGoogle Scholar
  38. 38.
    Batal HS, Cottrell DA. Alveolar distraction osteogenesis for implant site development. Oral Maxillofac Surg Clin North Am. 2004;16(1):91–109, vii.CrossRefPubMedGoogle Scholar
  39. 39.
    Lynch SE. Tissue engineering: applications in oral and maxillofacial surgery and periodontics. Chicago: Quintessence Publishing Company; 2008.Google Scholar
  40. 40.
    Jensen OT, Kuhlke KL. Maxillary full-arch alveolar split osteotomy with island osteoperiosteal flaps and sinus grafting using bone morphogenetic protein-2 and retrofitting for immediate loading with a provisional: surgical and prosthetic procedures and case report. Int J Oral Maxillofac Implants. 2013;28(5):e260–71.CrossRefPubMedGoogle Scholar
  41. 41.
    Kilic E, et al. Vertical ridge augmentation using sandwich osteotomy: 2 case reports. Gen Dent. 2013;61(6):e22–5.PubMedGoogle Scholar
  42. 42.
    Isaksson S, Alberius P. Maxillary alveolar ridge augmentation with onlay bone-grafts and immediate endosseous implants. J Craniomaxillofac Surg. 1992;20(1):2–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Barone A, Covani U. Maxillary alveolar ridge reconstruction with nonvascularized autogenous block bone: clinical results. J Oral Maxillofac Surg. 2007;65(10):2039–46.CrossRefPubMedGoogle Scholar
  44. 44.
    Cordaro L, Amade DS, Cordaro M. Clinical results of alveolar ridge augmentation with mandibular block bone grafts in partially edentulous patients prior to implant placement. Clin Oral Implants Res. 2002;13(1):103–11.CrossRefPubMedGoogle Scholar
  45. 45.
    Sailer HF. A new method of inserting endosseous implants in totally atrophic maxillae. J Craniomaxillofac Surg. 1989;17(7):299–305.CrossRefPubMedGoogle Scholar
  46. 46.
    Breine U, Branemark PI. Reconstruction of alveolar jaw bone. An experimental and clinical study of immediate and preformed autologous bone grafts in combination with osseointegrated implants. Scand J Plast Reconstr Surg. 1980;14(1):23–48.CrossRefPubMedGoogle Scholar
  47. 47.
    Proussaefs P, Lozada J. The use of intraorally harvested autogenous block grafts for vertical alveolar ridge augmentation: a human study. Int J Periodontics Restorative Dent. 2005;25(4):351–63.PubMedGoogle Scholar
  48. 48.
    Misch CM. Comparison of intraoral donor sites for onlay grafting prior to implant placement. Int J Oral Maxillofac Implants. 1997;12(6):767–76.PubMedGoogle Scholar
  49. 49.
    Tolman DE. Reconstructive procedures with endosseous implants in grafted bone: a review of the literature. Int J Oral Maxillofac Implants. 1995;10(3):275–94.PubMedGoogle Scholar
  50. 50.
    Pikos MA. Block autografts for localized ridge augmentation: part I. The posterior maxilla. Implant Dent. 1999;8(3):279–85.CrossRefPubMedGoogle Scholar
  51. 51.
    Pikos MA. Block autografts for localized ridge augmentation: part II. The posterior mandible. Implant Dent. 2000;9(1):67–75.CrossRefPubMedGoogle Scholar
  52. 52.
    Levin L, Nitzan D, Schwartz-Arad D. Success of dental implants placed in intraoral block bone grafts. J Periodontol. 2007;78(1):18–21.CrossRefPubMedGoogle Scholar
  53. 53.
    Stubinger S, et al. Harvesting of intraoral autogenous block grafts from the chin and ramus region: preliminary results with a variable square pulse Er:YAG laser. Lasers Surg Med. 2008;40(5):312–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Pourabbas R, Nezafati S. Clinical results of localized alveolar ridge augmentation with bone grafts harvested from symphysis in comparison with ramus. J Dent Res Dent Clin Dent Prospects. 2007;1(1):7–12.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Lin KY, et al. The effect of rigid fixation on the survival of onlay bone grafts: an experimental study. Plast Reconstr Surg. 1990;86(3):449–56.CrossRefPubMedGoogle Scholar
  56. 56.
    de Carvalho PS, Vasconcellos LW, Pi J. Influence of bed preparation on the incorporation of autogenous bone grafts: a study in dogs. Int J Oral Maxillofac Implants. 2000;15(4):565–70.PubMedGoogle Scholar
  57. 57.
    Urbani G, et al. Localized ridge augmentation with chin grafts and resorbable pins: case reports. Int J Periodontics Restorative Dent. 1998;18(4):363–75.PubMedGoogle Scholar
  58. 58.
    Albrektsson T. Repair of bone grafts. A vital microscopic and histological investigation in the rabbit. Scand J Plast Reconstr Surg. 1980;14(1):1–12.CrossRefPubMedGoogle Scholar
  59. 59.
    Keith JD Jr. Localized ridge augmentation with a block allograft followed by secondary implant placement: a case report. Int J Periodontics Restorative Dent. 2004;24(1):11–7.PubMedGoogle Scholar
  60. 60.
    Jardini MA, De Marco AC, Lima LA. Early healing pattern of autogenous bone grafts with and without e-PTFE membranes: a histomorphometric study in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100(6):666–73.CrossRefPubMedGoogle Scholar
  61. 61.
    Ronda M, et al. Expanded vs. dense polytetrafluoroethylene membranes in vertical ridge augmentation around dental implants: a prospective randomized controlled clinical trial. Clin Oral Implants Res. 2014;25(7):859–66.CrossRefPubMedGoogle Scholar
  62. 62.
    Urban IA, et al. Vertical ridge augmentation with titanium-reinforced, dense-PTFE membranes and a combination of particulated autogenous bone and anorganic bovine bone-derived mineral: a prospective case series in 19 patients. Int J Oral Maxillofac Implants. 2014;29(1):185–93.CrossRefPubMedGoogle Scholar
  63. 63.
    Dahlin C, et al. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg. 1988;81(5):672–6.CrossRefPubMedGoogle Scholar
  64. 64.
    Buser D, et al. Localized ridge augmentation with autografts and barrier membranes. Periodontol 2000. 1999;19:151–63.CrossRefPubMedGoogle Scholar
  65. 65.
    Deshpande S, et al. Vertical and horizontal ridge augmentation in anterior maxilla using autograft, xenograft and titanium mesh with simultaneous placement of endosseous implants. J Indian Soc Periodontol. 2014;18(5):661–5.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Clarizio LF. Successful implant restoration without the use of membrane barriers. J Oral Maxillofac Surg. 1999;57(9):1117–21.CrossRefPubMedGoogle Scholar
  67. 67.
    Simion M, et al. Vertical ridge augmentation around dental implants using a membrane technique and autogenous bone or allografts in humans. Int J Periodontics Restorative Dent. 1998;18(1):8–23.PubMedGoogle Scholar
  68. 68.
    Bhola M, Kinaia BM, Chahine K. Guided bone regeneration using an allograft material: review and case presentations. Pract Proced Aesthet Dent. 2008;20(9):551–7; quiz 558.PubMedGoogle Scholar
  69. 69.
    Zitzmann N, Schärer P, Marinello C. Factors influencing the success of GBR. J Clin Periodontol. 1999;26(10):673–82.CrossRefPubMedGoogle Scholar
  70. 70.
    Malmquist JP. Successful implant restoration with the use of barrier membranes. J Oral Maxillofac Surg. 1999;57(9):1114–6.CrossRefPubMedGoogle Scholar
  71. 71.
    Jensen OT, et al. Vertical guided bone-graft augmentation in a new canine mandibular model. Int J Oral Maxillofac Implants. 1995;10(3):335–44.PubMedGoogle Scholar
  72. 72.
    Schenk RK, et al. Healing pattern of bone regeneration in membrane-protected defects: a histologic study in the canine mandible. Int J Oral Maxillofac Implants. 1994;9(1):13–29.PubMedGoogle Scholar
  73. 73.
    Sheikh Z, Abdallah MN, Hamdan N, Javaid MA, Khurshid Z. Barrier membranes for tissue regeneration and bone augmentation techniques in dentistry. In: Matilinna KP, editor. Handbook of oral biomaterials. Singapore: Pan Stanford Publishing; 2014.Google Scholar
  74. 74.
    Rakhmatia YD, et al. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J Prosthodont Res. 2013;57(1):3–14.CrossRefPubMedGoogle Scholar
  75. 75.
    Hasson O. Augmentation of deficient lateral alveolar ridge using the subperiosteal tunneling dissection approach. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(3):e14–9.CrossRefPubMedGoogle Scholar
  76. 76.
    Kent JN, et al. Correction of alveolar ridge deficiencies with nonresorbable hydroxylapatite. J Am Dent Assoc. 1982;105(6):993–1001.CrossRefPubMedGoogle Scholar
  77. 77.
    Williams CW, Meyers JF, Robinson RR. Hydroxyapatite augmentation of the anterior portion of the maxilla with a modified transpositional flap technique. Oral Surg Oral Med Oral Pathol. 1991;72(4):395–9.CrossRefPubMedGoogle Scholar
  78. 78.
    Kent JN. Reconstruction of the alveolar ridge with hydroxyapatite. Dent Clin North Am. 1986;30(2):231–57.PubMedGoogle Scholar
  79. 79.
    Tamimi F, Sheikh Z, Barralet J. Dicalcium phosphate cements: brushite and monetite. Acta Biomater. 2012;8(2):474–87.CrossRefPubMedGoogle Scholar
  80. 80.
    Sheikh ZA, Javaid MA, Abdallah MN. Bone replacement graft materials in dentistry. In: Zafar S, Khurshid Z, editors. Dental biomaterials (principle and its application). Karachi: Paramount Publishing Enterprise; 2013.Google Scholar
  81. 81.
    Sheikh Z, et al. Mechanisms of in vivo degradation and resorption of calcium phosphate based biomaterials. Materials. 2015;8(11):7913–25.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Draenert FG, et al. Vertical bone augmentation procedures: basics and techniques in dental implantology. J Biomed Mater Res A. 2014;102(5):1605–13.CrossRefPubMedGoogle Scholar
  83. 83.
    Cypher TJ, Grossman JP. Biological principles of bone graft healing. J Foot Ankle Surg. 1996;35(5):413–7.CrossRefPubMedGoogle Scholar
  84. 84.
    Simion M, et al. Long-term evaluation of osseointegrated implants inserted at the time or after vertical ridge augmentation. A retrospective study on 123 implants with 1-5 year follow-up. Clin Oral Implants Res. 2001;12(1):35–45.CrossRefPubMedGoogle Scholar
  85. 85.
    Nkenke E, et al. Morbidity of harvesting of bone grafts from the iliac crest for preprosthetic augmentation procedures: a prospective study. Int J Oral Maxillofac Surg. 2004;33(2):157–63.CrossRefPubMedGoogle Scholar
  86. 86.
    Wilk R. Bony reconstruction of the jaws. In: Miloro M, editor. Peterson’s principles of oral and maxillofacial surgery. Hamilton (London): BC Decker; 2004. p. 785–7.Google Scholar
  87. 87.
    Rocchietta I, et al. Vertical bone augmentation with an autogenous block or particles in combination with guided bone regeneration: a clinical and histological preliminary study in humans. Clin Implant Dent Relat Res. 2016;18(1):19–29.CrossRefPubMedGoogle Scholar
  88. 88.
    Merli M, Lombardini F, Esposito M. Vertical ridge augmentation with autogenous bone grafts 3 years after loading: resorbable barriers versus titanium-reinforced barriers. A randomized controlled clinical trial. Int J Oral Maxillofac Implants. 2010;25(4):801–7.PubMedGoogle Scholar
  89. 89.
    Block MS, Degen M. Horizontal ridge augmentation using human mineralized particulate bone: preliminary results. J Oral Maxillofac Surg. 2004;62(9 Suppl 2):67–72.CrossRefPubMedGoogle Scholar
  90. 90.
    Araujo PP, et al. Block allograft for reconstruction of alveolar bone ridge in implantology: a systematic review. Implant Dent. 2013;22(3):304–8.CrossRefPubMedGoogle Scholar
  91. 91.
    Sterio TW, et al. A prospective, multicenter study of bovine pericardium membrane with cancellous particulate allograft for localized alveolar ridge augmentation. Int J Periodontics Restorative Dent. 2013;33(4):499–507.CrossRefPubMedGoogle Scholar
  92. 92.
    Al Ruhaimi KA. Bone graft substitutes: a comparative qualitative histologic review of current osteoconductive grafting materials. Int J Oral Maxillofac Implants. 2001;16(1):105–14.PubMedGoogle Scholar
  93. 93.
    Contar CM, et al. Fresh-frozen bone allografts in maxillary ridge augmentation: histologic analysis. J Oral Implantol. 2011;37(2):223–31.CrossRefPubMedGoogle Scholar
  94. 94.
    Contar CM, et al. Maxillary ridge augmentation with fresh-frozen bone allografts. J Oral Maxillofac Surg. 2009;67(6):1280–5.CrossRefPubMedGoogle Scholar
  95. 95.
    Dias RR, et al. Corticocancellous fresh-frozen allograft bone blocks for augmenting atrophied posterior mandibles in humans. Clin Oral Implants Res. 2016;27(1):39–46.CrossRefPubMedGoogle Scholar
  96. 96.
    Macedo LG, et al. Fresh-frozen human bone allograft in vertical ridge augmentation: clinical and tomographic evaluation of bone formation and resorption. Cell Tissue Bank. 2012;13(4):577–86.CrossRefPubMedGoogle Scholar
  97. 97.
    Mellonig JT. Freeze-dried bone allografts in periodontal reconstructive surgery. Dent Clin North Am. 1991;35(3):505–20.PubMedGoogle Scholar
  98. 98.
    Kukreja BJ, et al. A comparative evaluation of platelet-rich plasma in combination with demineralized freeze-dried bone allograft and DFDBA alone in the treatment of periodontal intrabony defects: a clinicoradiographic study. J Indian Soc Periodontol. 2014;18(5):618–23.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Blaggana V, Gill AS, Blaggana A. A clinical and radiological evaluation of the relative efficacy of demineralized freeze-dried bone allograft versus anorganic bovine bone xenograft in the treatment of human infrabony periodontal defects: a 6 months follow-up study. J Indian Soc Periodontol. 2014;18(5):601–7.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Markou N, et al. Treatment of periodontal endosseous defects with platelet-rich plasma alone or in combination with demineralized freeze-dried bone allograft: a comparative clinical trial. J Periodontol. 2009;80(12):1911–9.CrossRefPubMedGoogle Scholar
  101. 101.
    Quattlebaum JB, Mellonig JT, Hensel NF.Antigenicity of freeze-dried cortical bone allograft in human periodontal osseous defects. J Periodontol. 1988;59(6):394–7.CrossRefPubMedGoogle Scholar
  102. 102.
    Friedlaender GE, Strong DM, Sell KW. Studies on the antigenicity of bone. I. Freeze-dried and deep-frozen bone allografts in rabbits. J Bone Joint Surg Am. 1976;58(6):854–8.CrossRefPubMedGoogle Scholar
  103. 103.
    Kao ST, Scott DD. A review of bone substitutes. Oral Maxillofac Surg Clin North Am. 2007;19(4):513–21.CrossRefPubMedGoogle Scholar
  104. 104.
    Committee on Research, Science and Therapy of the American Academy of Periodontology. Tissue banking of bone allografts used in periodontal regeneration. J Periodontol. 2001;72(6):834.CrossRefGoogle Scholar
  105. 105.
    Mellonig JT. Human histologic evaluation of a bovine-derived bone xenograft in the treatment of periodontal osseous defects. Int J Periodontics Restorative Dent. 2000;20(1):19–29.PubMedGoogle Scholar
  106. 106.
    Sunitha Raja V, Naidu M. Platelet-rich fibrin: evolution of a second-generation platelet concentrate. Indian J Dent Res. 2008;19(1):42.CrossRefPubMedGoogle Scholar
  107. 107.
    Jacotti M, et al. Ridge augmentation with mineralized block allografts: clinical and histological evaluation of 8 cases treated with the 3-dimensional block technique. Implant Dent. 2012;21(6):444–8.CrossRefPubMedGoogle Scholar
  108. 108.
    Wallace S, Gellin R. Clinical evaluation of freeze-dried cancellous block allografts for ridge augmentation and implant placement in the maxilla. Implant Dent. 2010;19(4):272–9.CrossRefPubMedGoogle Scholar
  109. 109.
    Lyford RH, et al. Clinical evaluation of freeze-dried block allografts for alveolar ridge augmentation: a case series. Int J Periodontics Restorative Dent. 2003;23(5):417–25.PubMedGoogle Scholar
  110. 110.
    Russell J, Scarborough N, Chesmel K. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation. J Periodontol. 1997;68(8):804–6.CrossRefGoogle Scholar
  111. 111.
    Hopp SG, Dahners LE, Gilbert JA. A study of the mechanical strength of long bone defects treated with various bone autograft substitutes: an experimental investigation in the rabbit. J Orthop Res. 1989;7(4):579–84.CrossRefPubMedGoogle Scholar
  112. 112.
    Mellonig JT, Bowers GM, Bailey RC. Comparison of bone graft materials. Part I. New bone formation with autografts and allografts determined by Strontium-85. J Periodontol. 1981;52(6):291–6.CrossRefPubMedGoogle Scholar
  113. 113.
    Shigeyama Y, et al. Commercially-prepared allograft material has biological activity in vitro. J Periodontol. 1995;66(6):478–87.CrossRefPubMedGoogle Scholar
  114. 114.
    Hauschka PV, Chen TL, Mavrakos AE. Polypeptide growth factors in bone matrix. Ciba Found Symp. 1988;136:207–25.PubMedGoogle Scholar
  115. 115.
    Dodson SA, et al. In vitro comparison of aged and young osteogenic and hemopoietic bone marrow stem cells and their derivative colonies. J Periodontol. 1996;67(3):184–96.CrossRefPubMedGoogle Scholar
  116. 116.
    Jergesen HE, et al. Age effects on bone induction by demineralized bone powder. Clin Orthop Relat Res. 1991;268:253–9.Google Scholar
  117. 117.
    Scarano A, et al. Maxillary sinus augmentation with different biomaterials: a comparative histologic and histomorphometric study in man. Implant Dent. 2006;15(2):197–207.CrossRefPubMedGoogle Scholar
  118. 118.
    Senn. Senn on the healing of aseptic bone cavities by implantation of antiseptic decalcified bone. Ann Surg. 1889;10(5):352–68.Google Scholar
  119. 119.
    Thaller SR, et al. Reconstruction of calvarial defects with anorganic bovine bone mineral (Bio-Oss) in a rabbit model. J Craniofac Surg. 1993;4(2):79–84.CrossRefPubMedGoogle Scholar
  120. 120.
    McAllister BS, et al. Eighteen-month radiographic and histologic evaluation of sinus grafting with anorganic bovine bone in the chimpanzee. Int J Oral Maxillofac Implants. 1999;14(3):361–8.PubMedGoogle Scholar
  121. 121.
    Liu X, et al. Maxillary sinus floor augmentation and dental implant placement using dentin matrix protein-1 gene-modified bone marrow stromal cells mixed with deproteinized boving bone: a comparative study in beagles. Arch Oral Biol. 2016;64:102–8.CrossRefPubMedGoogle Scholar
  122. 122.
    Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res. 1981;(157):259–78.Google Scholar
  123. 123.
    Sogal A, Tofe AJ. Risk assessment of bovine spongiform encephalopathy transmission through bone graft material derived from bovine bone used for dental applications. J Periodontol. 1999;70(9):1053–63.CrossRefPubMedGoogle Scholar
  124. 124.
    Wenz B, Oesch B, Horst M. Analysis of the risk of transmitting bovine spongiform encephalopathy through bone grafts derived from bovine bone. Biomaterials. 2001;22(12):1599–606.CrossRefPubMedGoogle Scholar
  125. 125.
    Zitzmann NU, Naef R, Scharer P. Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants. 1997;12(6):844–52.PubMedGoogle Scholar
  126. 126.
    Yildirim M, et al. Maxillary sinus augmentation using xenogenic bone substitute material Bio-Oss in combination with venous blood. A histologic and histomorphometric study in humans. Clin Oral Implants Res. 2000;11(3):217–29.CrossRefPubMedGoogle Scholar
  127. 127.
    Felice P, et al. Vertical ridge augmentation of the atrophic posterior mandible with interpositional bloc grafts: bone from the iliac crest vs. bovine anorganic bone. Clinical and histological results up to one year after loading from a randomized-controlled clinical trial. Clin Oral Implants Res. 2009;20(12):1386–93.CrossRefPubMedGoogle Scholar
  128. 128.
    Yukna RA. Clinical evaluation of coralline calcium carbonate as a bone replacement graft material in human periodontal osseous defects. J Periodontol. 1994;65(2):177–85.CrossRefPubMedGoogle Scholar
  129. 129.
    Guillemin G, et al. The use of coral as a bone graft substitute. J Biomed Mater Res. 1987;21(5):557–67.CrossRefPubMedGoogle Scholar
  130. 130.
    Piattelli A, Podda G, Scarano A. Clinical and histological results in alveolar ridge enlargement using coralline calcium carbonate. Biomaterials. 1997;18(8):623–7.CrossRefPubMedGoogle Scholar
  131. 131.
    Gao TJ, et al. Morphological and biomechanical difference in healing in segmental tibial defects implanted with Biocoral or tricalcium phosphate cylinders. Biomaterials. 1997;18(3):219–23.CrossRefPubMedGoogle Scholar
  132. 132.
    Kim CK, et al. Periodontal repair in intrabony defects treated with a calcium carbonate implant and guided tissue regeneration. J Periodontol. 1996;67(12):1301–6.CrossRefPubMedGoogle Scholar
  133. 133.
    Hench LL. Bioactive materials: the potential for tissue regeneration. J Biomed Mater Res. 1998;41(4):511–8.CrossRefPubMedGoogle Scholar
  134. 134.
    AlGhamdi AS, Shibly O, Ciancio SG. Osseous grafting part II: xenografts and alloplasts for periodontal regeneration—a literature review. J Int Acad Periodontol. 2010;12(2):39–44.PubMedGoogle Scholar
  135. 135.
    Shetty V, Han TJ. Alloplastic materials in reconstructive periodontal surgery. Dent Clin North Am. 1991;35(3):521–30.PubMedGoogle Scholar
  136. 136.
    Sheikh Z, et al. Chelate setting of alkali ion substituted calcium phosphates. Ceram Int. 2015;41(8):10010–7.CrossRefGoogle Scholar
  137. 137.
    Tevlin R, et al. Biomaterials for craniofacial bone engineering. J Dent Res. 2014;93(12):1187–95.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Klein CP, et al. Biodegradation behavior of various calcium phosphate materials in bone tissue. J Biomed Mater Res. 1983;17(5):769–84.CrossRefPubMedGoogle Scholar
  139. 139.
    Rabalais ML Jr, Yukna RA, Mayer ET. Evaluation of durapatite ceramic as an alloplastic implant in periodontal osseous defects. I. Initial six-month results. J Periodontol. 1981;52(11):680–9.CrossRefPubMedGoogle Scholar
  140. 140.
    Meffert RM, et al. Hydroxylapatite as an alloplastic graft in the treatment of human periodontal osseous defects. J Periodontol. 1985;56(2):63–73.CrossRefPubMedGoogle Scholar
  141. 141.
    Ricci JL, et al. Evaluation of a low-temperature calcium phosphate particulate implant material: physical-chemical properties and in vivo bone response. J Oral Maxillofac Surg. 1992;50(9):969–78.CrossRefPubMedGoogle Scholar
  142. 142.
    Canullo L, Trisi P, Simion M. Vertical ridge augmentation around implants using e-PTFE titanium-reinforced membrane and deproteinized bovine bone mineral (bio-oss): a case report. Int J Periodontics Restorative Dent. 2006;26(4):355–61.PubMedGoogle Scholar
  143. 143.
    Sugar AW, et al. Augmentation of the atrophic maxillary alveolar ridge with hydroxyapatite granules in a Vicryl (polyglactin 910) knitted tube and simultaneous open vestibuloplasty. Br J Oral Maxillofac Surg. 1995;33(2):93–7.CrossRefPubMedGoogle Scholar
  144. 144.
    Small SA, et al. Augmenting the maxillary sinus for implants: report of 27 patients. Int J Oral Maxillofac Implants. 1993;8(5):523–8.PubMedGoogle Scholar
  145. 145.
    Strub JR, Gaberthuel TW, Firestone AR. Comparison of tricalcium phosphate and frozen allogenic bone implants in man. J Periodontol. 1979;50(12):624–9.CrossRefPubMedGoogle Scholar
  146. 146.
    Buser D, et al. Lateral ridge augmentation using autografts and barrier membranes: a clinical study with 40 partially edentulous patients. J Oral Maxillofac Surg. 1996;54(4):420–32; discussion 432–3.CrossRefPubMedGoogle Scholar
  147. 147.
    Shalash MA, et al. Evaluation of horizontal ridge augmentation using beta tricalcium phosphate and demineralized bone matrix: a comparative study. J Clin Exp Dent. 2013;5(5):e253–9.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Wang S, et al. Vertical alveolar ridge augmentation with beta-tricalcium phosphate and autologous osteoblasts in canine mandible. Biomaterials. 2009;30(13):2489–98.CrossRefPubMedGoogle Scholar
  149. 149.
    Nyan M, et al. Feasibility of alpha tricalcium phosphate for vertical bone augmentation. J Investig Clin Dent. 2014;5(2):109–16.CrossRefPubMedGoogle Scholar
  150. 150.
    Schepers E, et al. Bioactive glass particulate material as a filler for bone lesions. J Oral Rehabil. 1991;18(5):439–52.CrossRefPubMedGoogle Scholar
  151. 151.
    Hall EE, et al. Comparison of bioactive glass to demineralized freeze-dried bone allograft in the treatment of intrabony defects around implants in the canine mandible. J Periodontol. 1999;70(5):526–35.CrossRefPubMedGoogle Scholar
  152. 152.
    Schepers EJ, Ducheyne P. Bioactive glass particles of narrow size range for the treatment of oral bone defects: a 1-24 month experiment with several materials and particle sizes and size ranges. J Oral Rehabil. 1997;24(3):171–81.CrossRefPubMedGoogle Scholar
  153. 153.
    Tamimi F, et al. Minimally invasive maxillofacial vertical bone augmentation using brushite based cements. Biomaterials. 2009;30(2):208–16.CrossRefPubMedGoogle Scholar
  154. 154.
    Tamimi F, et al. Resorption of monetite granules in alveolar bone defects in human patients. Biomaterials. 2010;31(10):2762–9.CrossRefPubMedGoogle Scholar
  155. 155.
    Sheikh Z, et al. Controlling bone graft substitute microstructure to improve bone augmentation. Adv Healthc Mater. 2016;5(13):1646–55.CrossRefPubMedGoogle Scholar
  156. 156.
    Gehrke S, Famà G. Buccal dehiscence and sinus lift cases–predictable bone augmentation with synthetic bone material. Implants. 2010;11:4.Google Scholar
  157. 157.
    Tamimi FM, et al. Bone augmentation in rabbit calvariae: comparative study between Bio-Oss (R) and a novel beta-TCP/DCPD granulate. J Clin Periodontol. 2006;33(12):922–8.CrossRefPubMedGoogle Scholar
  158. 158.
    Sheikh Z, et al. In vitro degradation and in vivo resorption of dicalcium phosphate cement based grafts. Acta Biomater. 2015;26:338–46.CrossRefPubMedGoogle Scholar
  159. 159.
    Gbureck U, et al. Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Adv Funct Mater. 2007;17(18):3940–5.CrossRefGoogle Scholar
  160. 160.
    Tamimi F, et al. The effect of autoclaving on the physical and biological properties of dicalcium phosphate dihydrate bioceramics: brushite vs. monetite. Acta Biomater. 2012;8(8):3161–9.CrossRefPubMedGoogle Scholar
  161. 161.
    Idowu B, et al. In vitro osteoinductive potential of porous monetite for bone tissue engineering. J Tissue Eng. 2014;5:2041731414536572.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Tamimi F, et al. Bone regeneration in rabbit calvaria with novel monetite granules. J Biomed Mater Res A. 2008;87A(4):980–5.CrossRefGoogle Scholar
  163. 163.
    Tamimi F, et al. Craniofacial vertical bone augmentation: a comparison between 3D printed monolithic monetite blocks and autologous onlay grafts in the rabbit. Biomaterials. 2009;30(31):6318–26.CrossRefPubMedGoogle Scholar
  164. 164.
    Sheikh Z, et al. Protein adsorption capability on polyurethane and modified-polyurethane membrane for periodontal guided tissue regeneration applications. Mater Sci Eng C. 2016;68:267–75.CrossRefGoogle Scholar
  165. 165.
    Sanctis MD, Zucchelli G, Clauser C. Bacterial colonization of bioabsorbable barrier material and periodontal regeneration. J Periodontol. 1996;67(11):1193–200.CrossRefPubMedGoogle Scholar
  166. 166.
    Schenk RK, Buser D, Hardwick WR, Dahlin C. Healing pattern of bone regeneration in membraneprotected defects: a histologic study in the canine mandible. Int J Oral Max Impl. 1994;9:13–29.Google Scholar
  167. 167.
    Blumenthal NM. A clinical comparison of collagen membranes with e-PTFE membranes in the treatment of human mandibular Buccal class II furcation defects*. J Periodontol. 1993;64(10):925–33.CrossRefPubMedGoogle Scholar
  168. 168.
    Tatakis DN, Promsudthi A, Wikesjö UM. Devices for periodontal regeneration. Periodontology 2000. 1999;19(1):59–73.CrossRefPubMedGoogle Scholar
  169. 169.
    Murphy KG. Postoperative healing complications associated with Gore-Tex Periodontal Material. Part I. Incidence and characterization. Int J Periodontics Restorative Dent. 1995;15(4):363–75.PubMedGoogle Scholar
  170. 170.
    Hämmerle CH, Jung RE. Bone augmentation by means of barrier membranes. Periodontology 2000. 2003;33(1):36–53.CrossRefPubMedGoogle Scholar
  171. 171.
    Sculean A, Nikolidakis D, Schwarz F. Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials–biological foundation and preclinical evidence: a systematic review. J Clin Periodontol. 2008;35(s8):106–16.CrossRefPubMedGoogle Scholar
  172. 172.
    Kempczinski RF, et al. Endothelial cell seeding of a new PTFE vascular prosthesis. J Vasc Surg. 1985;2(3):424–9.CrossRefPubMedGoogle Scholar
  173. 173.
    Bauer JJ, et al. Repair of large abdominal wall defects with expanded polytetrafluoroethylene (PTFE). Ann Surg. 1987;206(6):765.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Piattelli A, et al. Evaluation of guided bone regeneration in rabbit tibia using bioresorbable and non-resorbable membranes. Biomaterials. 1996;17(8):791–6.CrossRefPubMedGoogle Scholar
  175. 175.
    Scantlebury TV. 1982-1992: a decade of technology development for guided tissue regeneration*. J Periodontol. 1993;64(11s):1129–37.CrossRefGoogle Scholar
  176. 176.
    Jovanovic SA, Nevins M. Bone formation utilizing titanium-reinforced barrier membranes. Int J Periodontics Restorative Dent. 1995;15(1):56–69.PubMedGoogle Scholar
  177. 177.
    Hürzeler M, Strub J. Guided bone regeneration around exposed implants: a new bioresorbable device and bioresorbable membrane pins. Pract Periodontics Aesthet Dent. 1994;7(9):37–47; quiz 50.Google Scholar
  178. 178.
    Lundgren D, et al. The use of a new bioresorbable barrier for guided bone regeneration in connection with implant installation. Case reports. Clin Oral Implants Res. 1994;5(3):177–84.CrossRefPubMedGoogle Scholar
  179. 179.
    Nobréus N, Attström R, Linde A. Guided bone regeneration in dental implant treatment using a bioabsorbable membrane. Clin Oral Implants Res. 1997;8(1):10–7.CrossRefPubMedGoogle Scholar
  180. 180.
    Ratner BD. Biomaterials science: an introduction to materials in medicine. Boston: Academic; 2004.Google Scholar
  181. 181.
    Simion M, et al. Guided bone regeneration using resorbable and nonresorbable membranes: a comparative histologic study in humans. Int J Oral Maxillofac Implants. 1996;11(6):735–42.PubMedGoogle Scholar
  182. 182.
    Parodi R, Santarelli G, Carusi G. Application of slow-resorbing collagen membrane to periodontal and peri-implant guided tissue regeneration. Int J Periodontics Restorative Dent. 1996;16(2):174–85.PubMedGoogle Scholar
  183. 183.
    Avera SP, Stampley WA, McAllister BS. Histologic and clinical observations of resorbable and nonresorbable barrier membranes used in maxillary sinus graft containment. Int J Oral Maxillofac Implants. 1996;12(1):88–94.Google Scholar
  184. 184.
    Gotfredsen K, Nimb L, Hjørting-hansen E. Immediate implant placement using a biodegradable barrier, polyhydroxybutyrate-hydroxyvalerate reinforced with polyglactin 910. An experimental study in dogs. Clin Oral Implants Res. 1994;5(2):83–91.CrossRefPubMedGoogle Scholar
  185. 185.
    Bunyaratavej P, Wang H-L. Collagen membranes: a review. J Periodontol. 2001;72(2):215–29.CrossRefPubMedGoogle Scholar
  186. 186.
    Behring J, et al. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontology. 2008;96(1):1–11.CrossRefPubMedGoogle Scholar
  187. 187.
    Lee C, Grodzinsky A, Spector M. The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials. 2001;22(23):3145–54.CrossRefPubMedGoogle Scholar
  188. 188.
    Oh TJ, et al. Comparative analysis of collagen membranes for the treatment of implant dehiscence defects. Clin Oral Implants Res. 2003;14(1):80–90.CrossRefPubMedGoogle Scholar
  189. 189.
    Lee S-W, Kim S-G. Membranes for the guided bone regeneration. Korean Assoc Maxillofac Plast Reconstr Surg. 2014;36(6):239–46.CrossRefGoogle Scholar
  190. 190.
    Magnusson I, Batich C, Collins B. New attachment formation following controlled tissue regeneration using biodegradable membranes*. J Periodontol. 1988;59(1):1–6.CrossRefPubMedGoogle Scholar
  191. 191.
    Tanner MG, Solt CW, Vuddhakanok S. An evaluation of new attachment formation using a microfibhllar collagen barrier*. J Periodontol. 1988;59(8):524–30.CrossRefPubMedGoogle Scholar
  192. 192.
    Schliephake H, et al. Enhancement of bone ingrowth into a porous hydroxylapatite-matrix using a resorbable polylactic membrane: an experimental pilot study. J Oral Maxillofac Surg. 1994;52(1):57–63.CrossRefPubMedGoogle Scholar
  193. 193.
    Wang H-L, Carroll M. Guided bone regeneration using bone grafts and collagen membranes. Quintessence Int (Berlin, Germany: 1985). 2000;32(7):504–15.Google Scholar
  194. 194.
    Vert M. Bioresorbable polymers for temporary therapeutic applications. Die Angew Makromol Chem. 1989;166(1):155–68.CrossRefGoogle Scholar
  195. 195.
    Vert M, et al. Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med. 1992;3(6):432–46.CrossRefGoogle Scholar
  196. 196.
    Minabe M. A critical review of the biologic rationale for guided tissue regeneration*. J Periodontol. 1991;62(3):171–9.CrossRefPubMedGoogle Scholar
  197. 197.
    Jepsen S, et al. A systematic review of guided tissue regeneration for periodontal furcation defects. What is the effect of guided tissue regeneration compared with surgical debridement in the treatment of furcation defects? J Clin Periodontol. 2002;29(s3):103–16.CrossRefPubMedGoogle Scholar
  198. 198.
    Caton J, Greenstein G, Zappa U. Synthetic bioabsorbable barrier for regeneration in human periodontal defects. J Periodontol. 1994;65(11):1037–45.CrossRefPubMedGoogle Scholar
  199. 199.
    Israelachvili J, Wennerström H. Role of hydration and water structure in biological and colloidal interactions. Nature. 1996;379(6562):219–25.CrossRefPubMedGoogle Scholar
  200. 200.
    Milella E, et al. Physicochemical, mechanical, and biological properties of commercial membranes for GTR. J Biomed Mater Res. 2001;58(4):427–35.CrossRefPubMedGoogle Scholar
  201. 201.
    Simion M, et al. Treatment of dehiscences and fenestrations around dental implants using resorbable and nonresorbable membranes associated with bone autografts: a comparative clinical study. Int J Oral Maxillofac Implants. 1996;12(2):159–67.Google Scholar
  202. 202.
    Aurer A, Jorgie-Srdjak K. Membranes for periodontal regeneration. Acta Stomatol Croat. 2005;39:107–12.Google Scholar
  203. 203.
    Rapiey J, et al. The use of biodegradable polylactic acid barrier materials in the treatment of grade II periodontal furcation defects in humans—part II: a multi-center investigative surgical study. Int J Periodontics Restorative Dent. 1999;19:57–65.Google Scholar
  204. 204.
    Araujo M, Berglundh T, Lindhe J. GTR treatment of degree III furcation defects with 2 different resorbable barriers. An experimental study in dogs. J Clin Periodontol. 1998;25(3):253–9.CrossRefPubMedGoogle Scholar
  205. 205.
    Taddei P, Monti P, Simoni R. Vibrational and thermal study on the in vitro and in vivo degradation of a bioabsorbable periodontal membrane: Vicryl® Periodontal Mesh (Polyglactin 910). J Mater Sci Mater Med. 2002;13(1):59–64.CrossRefPubMedGoogle Scholar
  206. 206.
    Park YJ, et al. Porous poly (L-lactide) membranes for guided tissue regeneration and controlled drug delivery: membrane fabrication and characterization. J Control Release. 1997;43(2):151–60.CrossRefGoogle Scholar
  207. 207.
    Dörfer CE, et al. Regenerative periodontal surgery in interproximal intrabony defects with biodegradable barriers. J Clin Periodontol. 2000;27(3):162–8.CrossRefPubMedGoogle Scholar
  208. 208.
    Singh AK. GTR membranes: the barriers for periodontal regeneration. DHR Int J Med Sci 2013;4:31–8.Google Scholar
  209. 209.
    Ouanounou A, Hassanpour S, Glogauer M. The influence of systemic medications on osseointegration of dental implants. J Can Dent Assoc. 2016;82(g7):1488–2159.Google Scholar
  210. 210.
    Hwang D, Wang H-L. Medical contraindications to implant therapy: part II: relative contraindications. Implant Dent. 2007;16(1):13–23.CrossRefPubMedGoogle Scholar
  211. 211.
    Beikler T, Flemmig TF. Implants in the medically compromised patient. Crit Rev Oral Biol Med. 2003;14(4):305–16.CrossRefPubMedGoogle Scholar
  212. 212.
    Mortensen M, Lawson W, Montazem A. Osteonecrosis of the jaw associated with bisphosphonate use: presentation of seven cases and literature review. Laryngoscope. 2007;117(1):30–4.CrossRefPubMedGoogle Scholar
  213. 213.
    Mavrokokki T, et al. Nature and frequency of bisphosphonate-associated osteonecrosis of the jaws in Australia. J Oral Maxillofac Surg. 2007;65(3):415–23.CrossRefPubMedGoogle Scholar
  214. 214.
    Wang H-L, Weber D, McCauley LK. Effect of long-term oral bisphosphonates on implant wound healing: literature review and a case report. J Periodontol. 2007;78(3):584–94.CrossRefPubMedGoogle Scholar
  215. 215.
    Stanford CM. Dental implants: a role in geriatric dentistry for the general practice? J Am Dent Assoc. 2007;138:S34–40.CrossRefGoogle Scholar
  216. 216.
    Duygu G, et al. Dental implant complications. Int J Oral Maxillofac Surg. 2007;36(11):1092–3.CrossRefGoogle Scholar
  217. 217.
    Taba M Jr, et al. Current concepts in periodontal bioengineering. Orthod Craniofac Res. 2005;8(4):292–302.CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Becker W, et al. A comparison of ePTFE membranes alone or in combination with platelet-derived growth factors and insulin-like growth factor-I or demineralized freeze-dried bone in promoting bone formation around immediate extraction socket implants. J Periodontol. 1992;63(11):929–40.CrossRefPubMedGoogle Scholar
  219. 219.
    Simion M, et al. Vertical ridge augmentation by means of deproteinized bovine bone block and recombinant human platelet-derived growth factor-BB: a histologic study in a dog model. Int J Periodontics Restorative Dent. 2006;26(5):415–23.PubMedGoogle Scholar
  220. 220.
    Kammerer PW, et al. Influence of a collagen membrane and recombinant platelet-derived growth factor on vertical bone augmentation in implant-fixed deproteinized bovine bone—animal pilot study. Clin Oral Implants Res. 2013;24(11):1222–30.PubMedGoogle Scholar
  221. 221.
    Tsuchiya N, et al. Effect of a chitosan sponge impregnated with platelet-derived growth factor on bone augmentation beyond the skeletal envelope in rat calvaria. J Oral Sci. 2014;56(1):23–8.CrossRefPubMedGoogle Scholar
  222. 222.
    Cabbar F, et al. The effect of bovine bone graft with or without platelet-rich plasma on maxillary sinus floor augmentation. J Oral Maxillofac Surg. 2011;69(10):2537–47.CrossRefPubMedGoogle Scholar
  223. 223.
    Eskan MA, et al. Platelet-rich plasma-assisted guided bone regeneration for ridge augmentation: a randomized, controlled clinical trial. J Periodontol. 2014;85(5):661–8.CrossRefPubMedGoogle Scholar
  224. 224.
    Khairy NM, et al. Effect of platelet rich plasma on bone regeneration in maxillary sinus augmentation (randomized clinical trial). Int J Oral Maxillofac Surg. 2013;42(2):249–55.CrossRefPubMedGoogle Scholar
  225. 225.
    Marx RE, et al. Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(6):638–46.CrossRefPubMedGoogle Scholar
  226. 226.
    Wallace SS, Froum SJ. Effect of maxillary sinus augmentation on the survival of endosseous dental implants. A systematic review. Ann Periodontol. 2003;8(1):328–43.CrossRefPubMedGoogle Scholar
  227. 227.
    Sanchez AR, Sheridan PJ, Kupp LI. Is platelet-rich plasma the perfect enhancement factor? A current review. Int J Oral Maxillofac Implants. 2003;18(1):93–103.PubMedGoogle Scholar
  228. 228.
    Sheikh Z, et al. Bone regeneration using bone morphogenetic proteins and various biomaterial carriers. Materials. 2015;8(4):1778–816.CrossRefPubMedPubMedCentralGoogle Scholar
  229. 229.
    Edmunds RK, et al. Maxillary anterior ridge augmentation with recombinant human bone morphogenetic protein 2. Int J Periodontics Restorative Dent. 2014;34(4):551–7.CrossRefPubMedGoogle Scholar
  230. 230.
    Katanec D, et al. Use of recombinant human bone morphogenetic protein (rhBMP2) in bilateral alveolar ridge augmentation: case report. Coll Antropol. 2014;38(1):325–30.PubMedGoogle Scholar
  231. 231.
    Kim YJ, et al. Ridge preservation using demineralized bone matrix gel with recombinant human bone morphogenetic protein-2 after tooth extraction: a randomized controlled clinical trial. J Oral Maxillofac Surg. 2014;72(7):1281–90.CrossRefPubMedGoogle Scholar
  232. 232.
    Shweikeh F, et al. Assessment of outcome following the use of recombinant human bone morphogenetic protein-2 for spinal fusion in the elderly population. J Neurosurg Sci. 2016;60(2):256–71.PubMedGoogle Scholar
  233. 233.
    Zhang H, et al. A meta analysis of lumbar spinal fusion surgery using bone morphogenetic proteins and autologous iliac crest bone graft. PLoS One. 2014;9(6):e97049.CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Lieberman JR, et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg Am. 1999;81(7):905–17.CrossRefPubMedGoogle Scholar
  235. 235.
    Breitbart AS, et al. Gene-enhanced tissue engineering: applications for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene. Ann Plast Surg. 1999;42(5):488–95.CrossRefPubMedGoogle Scholar
  236. 236.
    Ishaug SL, et al. Osteoblast function on synthetic biodegradable polymers. J Biomed Mater Res. 1994;28(12):1445–53.CrossRefPubMedGoogle Scholar
  237. 237.
    Malekzadeh R, et al. Isolation of human osteoblast-like cells and in vitro amplification for tissue engineering. J Periodontol. 1998;69(11):1256–62.CrossRefPubMedGoogle Scholar
  238. 238.
    Freed LE, et al. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res. 1993;27(1):11–23.CrossRefPubMedGoogle Scholar
  239. 239.
    De Kok IJ, et al. Evaluation of mesenchymal stem cells following implantation in alveolar sockets: a canine safety study. Int J Oral Maxillofac Implants. 2005;20(4):511–8.PubMedGoogle Scholar
  240. 240.
    Bruder SP, et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am. 1998;80(7):985–96.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zeeshan Sheikh
    • 1
    • 2
  • Siavash Hasanpour
    • 1
  • Michael Glogauer
    • 1
  1. 1.Faculty of Dentistry, Matrix Dynamics GroupUniversity of TorontoTorontoCanada
  2. 2.Lunenfeld-Tenebaum Research Institute, Mt. Sinai HospitalTorontoCanada

Personalised recommendations