Skip to main content

On Structural Parameterizations of the Matching Cut Problem

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10628))

Abstract

In an undirected graph, a matching cut is a partition of vertices into two sets such that the edges across the sets induce a matching. The matching cut problem is the problem of deciding whether a given graph has a matching cut. The matching cut problem can be expressed using a monadic second-order logic (MSOL) formula and hence is solvable in linear time for graphs with bounded tree-width. However, this approach leads to a running time of \(f(\phi , t) n^{O(1)}\), where \(\phi \) is the length of the MSOL formula, t is the tree-width of the graph and n is the number of vertices of the graph.

In [Theoretical Computer Science, 2016], Kratsch and Le asked to give a single exponential algorithm for the matching cut problem with tree-width alone as the parameter. We answer this question by giving a \(2^{O(t)} n^{O(1)}\) time algorithm. We also show the tractability of the matching cut problem when parameterized by neighborhood diversity and other structural parameters.

Anjeneya Swami Kare—Faculty member of University of Hyderabad.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graham, R.L.: On primitive graphs and optimal vertex assignments. Ann. N. Y. Acad. Sci. 175(1), 170–186 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  2. Farley, A.M., Proskurowski, A.: Networks immune to isolated line failures. Networks 12(4), 393–403 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Patrignani, M., Pizzonia, M.: The complexity of the matching-cut problem. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 284–295. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45477-2_26

    Chapter  Google Scholar 

  4. Chvátal, V.: Recognizing decomposable graphs. J. Gr. Theory 8(1), 51–53 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Le, V.B., Randerath, B.: On stable cutsets in line graphs. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 263–271. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45477-2_24

    Chapter  Google Scholar 

  6. Bonsma, P.: The complexity of the matching-cut problem for planar graphs and other graph classes. J. Gr. Theory 62(2), 109–126 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Moshi, A.M.: Matching cutsets in graphs. J. Gr. Theory 13(5), 527–536 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Borowiecki, M., Jesse-Józefczyk, K.: Matching cutsets in graphs of diameter \(2\). Theoret. Comput. Sci. 407(1–3), 574–582 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kratsch, D., Le, V.B.: Algorithms solving the matching cut problem. Theoret. Comput. Sci. 609(2), 328–335 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  10. Klein, S., de Figueiredo, C.M.H.: The NP-completeness of multi-partite cutset testing. Congr. Numerantium 119, 217–222 (1996)

    MATH  MathSciNet  Google Scholar 

  11. Brandstädt, A., Dragan, F.F., Le, V.B., Szymczak, T.: On stable cutsets in graphs. Discret. Appl. Math. 105(1), 39–50 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Le, V.B., Mosca, R., Müller, H.: On stable cutsets in claw-free graphs and planar graphs. J. Discret. Algorithms 6(2), 256–276 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Robertson, N., Seymour, P.: Graph minors. X. Obstructions to tree-decomposition. J. Comb. Theory Ser. B 52(2), 153–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kloks, T. (ed.): Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

  15. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ganian, R.: Using neighborhood diversity to solve hard problems. CoRR abs/1201.3091 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjeneya Swami Kare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aravind, N.R., Kalyanasundaram, S., Kare, A.S. (2017). On Structural Parameterizations of the Matching Cut Problem. In: Gao, X., Du, H., Han, M. (eds) Combinatorial Optimization and Applications. COCOA 2017. Lecture Notes in Computer Science(), vol 10628. Springer, Cham. https://doi.org/10.1007/978-3-319-71147-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71147-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71146-1

  • Online ISBN: 978-3-319-71147-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics