Skip to main content

Angina and Ischemia in Women with No Obstructive Coronary Artery Disease

  • 539 Accesses

Abstract

Ischemic heart disease (IHD) continues to be a major health threat to women worldwide. Sex-specific differences in IHD presentation, pathophysiology, treatment, and outcomes have increasingly been identified. While IHD care has focused around detection and treatment of obstructive coronary artery disease (CAD), it is clear that symptomatic patients with evidence of ischemia do not always have obstructive CAD. This problem appears to disproportionately impact women; compared to men, women who present with acute coronary syndrome/unstable angina as well as stable angina are more likely to have non-obstructive CAD on coronary angiography, and yet have a high IHD morbidity and mortality. Data indicates that coronary microvascular dysfunction (CMD), due to endothelial and non-endothelial dependent mechanisms, may be an explanation in at least half of these symptomatic women who have evidence of myocardial ischemia. CMD is associated with adverse cardiovascular outcomes, including myocardial infarction, stroke, and heart failure. This chapter focuses on CMD diagnosis and treatment (pharmacological and non-pharmacological approaches) in women with no obstructive CAD.

Keywords

  • Microvascular angina
  • Endothelial dysfunction
  • Women and heart disease

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-71135-5_8
  • Chapter length: 33 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-71135-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)
Hardcover Book
USD   149.00
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5

References

  1. Bairey Merz CN. Sex, death, and the diagnosis gap. Circulation. 2014;130(9):740–2.

    PubMed  CrossRef  Google Scholar 

  2. Bairey Merz CN, Pepine CJ, Walsh MN, Fleg JL. Ischemia and No Obstructive Coronary Artery Disease (INOCA): developing evidence-based therapies and research agenda for the next decade. Circulation. 2017;135(11):1075–92.

    PubMed  CrossRef  Google Scholar 

  3. Pepine CJ, Ferdinand KC, Shaw LJ, et al. Emergence of nonobstructive coronary artery disease: a woman’s problem and need for change in definition on angiography. J Am Coll Cardiol. 2015;66(17):1918–33.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  4. Bucholz EM, Butala NM, Rathore SS, Dreyer RP, Lansky AJ, Krumholz HM. Sex differences in long-term mortality after myocardial infarction: a systematic review. Circulation. 2014;130(9):757–67.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  5. Mehta PK, Wei J, Wenger NK. Ischemic heart disease in women: a focus on risk factors. Trends Cardiovasc Med. 2015;25(2):140–51.

    PubMed  CrossRef  Google Scholar 

  6. Mehta LS, Beckie TM, DeVon HA, et al. Acute myocardial infarction in women: a scientific statement from the American Heart Association. Circulation. 2016;133(9):916–47.

    PubMed  CrossRef  CAS  Google Scholar 

  7. Phan A, Shufelt C, Merz CN. Persistent chest pain and no obstructive coronary artery disease. JAMA. 2009;301(14):1468–74.

    PubMed  CrossRef  CAS  Google Scholar 

  8. Humphries KH, Pu A, Gao M, Carere RG, Pilote L. Angina with “normal” coronary arteries: sex differences in outcomes. Am Heart J. 2008;155(2):375–81.

    PubMed  CrossRef  Google Scholar 

  9. Reis SE, Holubkov R, Conrad Smith AJ, et al. Coronary microvascular dysfunction is highly prevalent in women with chest pain in the absence of coronary artery disease: results from the NHLBI WISE study. Am Heart J. 2001;141(5):735–41.

    PubMed  CrossRef  CAS  Google Scholar 

  10. Hasdai D, Holmes DR Jr, Higano ST, Burnett JC Jr, Lerman A. Prevalence of coronary blood flow reserve abnormalities among patients with nonobstructive coronary artery disease and chest pain. Mayo Clin Proc. 1998;73(12):1133–40.

    PubMed  CrossRef  CAS  Google Scholar 

  11. Ong P, Athanasiadis A, Borgulya G, Mahrholdt H, Kaski JC, Sechtem U. High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries. The ACOVA Study (Abnormal COronary VAsomotion in patients with stable angina and unobstructed coronary arteries). J Am Coll Cardiol. 2012;59(7):655–62.

    PubMed  CrossRef  CAS  Google Scholar 

  12. Kemp HG Jr. Left ventricular function in patients with the anginal syndrome and normal coronary arteriograms. Am J Cardiol. 1973;32(3):375–6.

    PubMed  CrossRef  Google Scholar 

  13. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356(8):830–40.

    PubMed  CrossRef  CAS  Google Scholar 

  14. Jones E, Eteiba W, Merz NB. Cardiac syndrome X and microvascular coronary dysfunction. Trends Cardiovasc Med. 2012;22(6):161–8.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  15. Murthy VL, Naya M, Taqueti VR, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129(24):2518–27.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  16. Patel MR, Dai D, Hernandez AF, et al. Prevalence and predictors of nonobstructive coronary artery disease identified with coronary angiography in contemporary clinical practice. Am Heart J. 2014;167(6):846–852.e842.

    PubMed  CrossRef  Google Scholar 

  17. Patel MR, Peterson ED, Dai D, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362(10):886–95.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  18. Beltrame JF, Crea F, Kaski JC, et al. International standardization of diagnostic criteria for vasospastic angina. Eur Heart J. 2015;38(33):2565–8.

    Google Scholar 

  19. Beltrame JF, Crea F, Kaski JC, et al. The who, what, why, when, how and where of vasospastic angina. Circ J. 2016;80(2):289–98.

    PubMed  CrossRef  Google Scholar 

  20. Marti CN, Gheorghiade M, Kalogeropoulos AP, Georgiopoulou VV, Quyyumi AA, Butler J. Endothelial dysfunction, arterial stiffness, and heart failure. J Am Coll Cardiol. 2012;60(16):1455–69.

    PubMed  CrossRef  CAS  Google Scholar 

  21. Quyyumi AA. Endothelial function in health and disease: new insights into the genesis of cardiovascular disease. Am J Med. 1998;105(1A):32S–9S.

    PubMed  CrossRef  CAS  Google Scholar 

  22. Ozkor MA, Murrow JR, Rahman AM, et al. Endothelium-derived hyperpolarizing factor determines resting and stimulated forearm vasodilator tone in health and in disease. Circulation. 2011;123(20):2244–53.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  23. Paneni F, Diaz Canestro C, Libby P, Luscher TF, Camici GG. The aging cardiovascular system: understanding it at the cellular and clinical levels. J Am Coll Cardiol. 2017;69(15):1952–67.

    PubMed  CrossRef  Google Scholar 

  24. Matsuzawa Y, Guddeti RR, Kwon TG, Lerman LO, Lerman A. Treating coronary disease and the impact of endothelial dysfunction. Prog Cardiovasc Dis. 2015;57(5):431–42.

    PubMed  CrossRef  Google Scholar 

  25. Flammer AJ, Anderson T, Celermajer DS, et al. The assessment of endothelial function: from research into clinical practice. Circulation. 2012;126(6):753–67.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  26. Yoshino S, Cilluffo R, Prasad M, et al. Sex-specific genetic variants are associated with coronary endothelial dysfunction. J Am Heart Assoc. 2016;5(4):e002544.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  27. Sara JD, Widmer RJ, Matsuzawa Y, Lennon RJ, Lerman LO, Lerman A. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC Cardiovasc Interv. 2015;8(11):1445–53.

    PubMed  CrossRef  Google Scholar 

  28. Bairey Merz CN, Shaw LJ, Reis SE, et al. Insights from the NHLBI-Sponsored Women’s Ischemia Syndrome Evaluation (WISE) Study: part II: gender differences in presentation, diagnosis, and outcome with regard to gender-based pathophysiology of atherosclerosis and macrovascular and microvascular coronary disease. J Am Coll Cardiol. 2006;47(3 Suppl):S21–9.

    PubMed  CrossRef  Google Scholar 

  29. Crea F, Bairey Merz CN, Beltrame JF, et al. The parallel tales of microvascular angina and heart failure with preserved ejection fraction: a paradigm shift. Eur Heart J. 2017;38(7):473–7.

    PubMed  Google Scholar 

  30. Nelson MD, Szczepaniak LS, Wei J, et al. Diastolic dysfunction in women with signs and symptoms of ischemia in the absence of obstructive coronary artery disease: a hypothesis-generating study. Circ Cardiovasc Imaging. 2014;7(3):510–6.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  31. Taqueti VR, Di Carli MF. Clinical significance of noninvasive coronary flow reserve assessment in patients with ischemic heart disease. Curr Opin Cardiol. 2016;31(6):662–9.

    PubMed  CrossRef  Google Scholar 

  32. Lerman A, Zeiher AM. Endothelial function: cardiac events. Circulation. 2005;111(3):363–8.

    PubMed  CrossRef  Google Scholar 

  33. McCraty R, Atkinson M, Tiller WA, Rein G, Watkins AD. The effects of emotions on short-term power spectrum analysis of heart rate variability. Am J Cardiol. 1995;76(14):1089–93.

    PubMed  CrossRef  CAS  Google Scholar 

  34. Pagani M, Furlan R, Pizzinelli P, Crivellaro W, Cerutti S, Malliani A. Spectral analysis of R-R and arterial pressure variabilities to assess sympatho-vagal interaction during mental stress in humans. J Hypertens Suppl. 1989;7(6):S14–5.

    PubMed  CrossRef  CAS  Google Scholar 

  35. Pagani M, Mazzuero G, Ferrari A, et al. Sympathovagal interaction during mental stress. A study using spectral analysis of heart rate variability in healthy control subjects and patients with a prior myocardial infarction. Circulation. 1991;83(4 Suppl):II43–51.

    PubMed  CAS  Google Scholar 

  36. Tuininga YS, Crijns HJ, Brouwer J, et al. Evaluation of importance of central effects of atenolol and metoprolol measured by heart rate variability during mental performance tasks, physical exercise, and daily life in stable postinfarct patients. Circulation. 1995;92(12):3415–23.

    PubMed  CrossRef  CAS  Google Scholar 

  37. Krantz DS, Kop WJ, Santiago HT, Gottdiener JS. Mental stress as a trigger of myocardial ischemia and infarction. Cardiol Clin. 1996;14(2):271–87.

    PubMed  CrossRef  CAS  Google Scholar 

  38. Rozanski A, Bairey CN, Krantz DS, et al. Mental stress and the induction of silent myocardial ischemia in patients with coronary artery disease. N Engl J Med. 1988;318(16):1005–12.

    PubMed  CrossRef  CAS  Google Scholar 

  39. Ramadan R, Sheps D, Esteves F, et al. Myocardial ischemia during mental stress: role of coronary artery disease burden and vasomotion. J Am Heart Assoc. 2013;2(5):e000321.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  40. Al Mheid I, Quyyumi AA. Sex differences in mental stress-induced myocardial ischemia: are women from venus? J Am Coll Cardiol. 2014;64(16):1679–80.

    PubMed  CrossRef  Google Scholar 

  41. Cardillo C, Kilcoyne CM, Quyyumi AA, Cannon RO 3rd, Panza JA. Role of nitric oxide in the vasodilator response to mental stress in normal subjects. Am J Cardiol. 1997;80(8):1070–4.

    PubMed  CrossRef  CAS  Google Scholar 

  42. Dakak N, Quyyumi AA, Eisenhofer G, Goldstein DS, Cannon RO 3rd. Sympathetically mediated effects of mental stress on the cardiac microcirculation of patients with coronary artery disease. Am J Cardiol. 1995;76(3):125–30.

    PubMed  CrossRef  CAS  Google Scholar 

  43. Rutledge T, Vaccarino V, Johnson BD, et al. Depression and cardiovascular health care costs among women with suspected myocardial ischemia: prospective results from the WISE (Women’s Ischemia Syndrome Evaluation) Study. J Am Coll Cardiol. 2009;53(2):176–83.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  44. Vaccarino V, Johnson BD, Sheps DS, et al. Depression, inflammation, and incident cardiovascular disease in women with suspected coronary ischemia: the National Heart, Lung, and Blood Institute-sponsored WISE study. J Am Coll Cardiol. 2007;50(21):2044–50.

    PubMed  CrossRef  Google Scholar 

  45. Rutledge T, Kenkre TS, Bittner V, et al. Anxiety associations with cardiac symptoms, angiographic disease severity, and healthcare utilization: the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation. Int J Cardiol. 2013;168(3):2335–40.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  46. Rutledge T, Linke SE, Krantz DS, et al. Comorbid depression and anxiety symptoms as predictors of cardiovascular events: results from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study. Psychosom Med. 2009;71(9):958–64.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  47. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 1974;33(1):87–94.

    PubMed  CrossRef  CAS  Google Scholar 

  48. Di Carli MF, Tobes MC, Mangner T, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med. 1997;336(17):1208–15.

    PubMed  CrossRef  Google Scholar 

  49. Gulli G, Cemin R, Pancera P, Menegatti G, Vassanelli C, Cevese A. Evidence of parasympathetic impairment in some patients with cardiac syndrome X. Cardiovasc Res. 2001;52(2):208–16.

    PubMed  CrossRef  CAS  Google Scholar 

  50. Camici PG, Marraccini P, Gistri R, Salvadori PA, Sorace O, L’Abbate A. Adrenergically mediated coronary vasoconstriction in patients with syndrome X. Cardiovasc Drugs Ther. 1994;8(2):221–6.

    PubMed  CrossRef  CAS  Google Scholar 

  51. Cemin R, Erlicher A, Fattor B, Pitscheider W, Cevese A. Reduced coronary flow reserve and parasympathetic dysfunction in patients with cardiovascular syndrome X. Coron Artery Dis. 2008;19(1):1–7.

    PubMed  CrossRef  Google Scholar 

  52. Lanza GA, Giordano A, Pristipino C, et al. Abnormal cardiac adrenergic nerve function in patients with syndrome X detected by [123I]metaiodobenzylguanidine myocardial scintigraphy. Circulation. 1997;96(3):821–6.

    PubMed  CrossRef  CAS  Google Scholar 

  53. Di Monaco A, Bruno I, Sestito A, et al. Cardiac adrenergic nerve function and microvascular dysfunction in patients with cardiac syndrome X. Heart. 2009;95(7):550–4.

    PubMed  CrossRef  Google Scholar 

  54. Bakir M, Nelson MD, Jones E, et al. Heart failure hospitalization in women with signs and symptoms of ischemia: a report from the women’s ischemia syndrome evaluation study. Int J Cardiol. 2016;223:936–9.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  55. AlBadri A, Lai K, Wei J, et al. Inflammatory biomarkers as predictors of heart failure in women without obstructive coronary artery disease: a report from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE). PLoS One. 2017;12(5):e0177684.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  56. Arrebola-Moreno AL, Arrebola JP, Moral-Ruiz A, Ramirez-Hernandez JA, Melgares-Moreno R, Kaski JC. Coronary microvascular spasm triggers transient ischemic left ventricular diastolic abnormalities in patients with chest pain and angiographically normal coronary arteries. Atherosclerosis. 2014;236(1):207–14.

    PubMed  CrossRef  CAS  Google Scholar 

  57. Ong P, Athanasiadis A, Mahrholdt H, Borgulya G, Sechtem U, Kaski JC. Increased coronary vasoconstrictor response to acetylcholine in women with chest pain and normal coronary arteriograms (cardiac syndrome X). Clin Res Cardiol. 2012;101(8):673–81.

    PubMed  CrossRef  CAS  Google Scholar 

  58. Hung MJ, Hu P, Hung MY. Coronary artery spasm: review and update. Int J Med Sci. 2014;11(11):1161–71.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  59. Shimokawa H. 2014 Williams Harvey Lecture: importance of coronary vasomotion abnormalities-from bench to bedside. Eur Heart J. 2014;35(45):3180–93.

    PubMed  CrossRef  CAS  Google Scholar 

  60. Tweet MS, Gulati R, Hayes SN. What clinicians should know alphabout spontaneous coronary artery dissection. Mayo Clin Proc. 2015;90(8):1125–30.

    PubMed  CrossRef  Google Scholar 

  61. Kanwar SS, Hayes SN, Olson TM, Gulati RA. breakthrough in spontaneous coronary artery dissection pathogenesis: is it an inherited condition? Expert Rev Cardiovasc Ther. 2017;15(1):1–2.

    PubMed  CrossRef  CAS  Google Scholar 

  62. Kwon TG, Gulati R, Matsuzawa Y, et al. Proliferation of coronary adventitial vasa vasorum in patients with spontaneous coronary artery dissection. JACC Cardiovasc Imaging. 2016;9(7):891–2.

    PubMed  CrossRef  Google Scholar 

  63. Saw J, Ricci D, Starovoytov A, Fox R, Buller CE. Spontaneous coronary artery dissection: prevalence of predisposing conditions including fibromuscular dysplasia in a tertiary center cohort. JACC Cardiovasc Interv. 2013;6(1):44–52.

    PubMed  CrossRef  Google Scholar 

  64. Kurisu S, Kihara Y. Tako-tsubo cardiomyopathy: clinical presentation and underlying mechanism. J Cardiol. 2012;60(6):429–37.

    PubMed  CrossRef  Google Scholar 

  65. Pelliccia F, Kaski JC, Crea F, Camici PG. Pathophysiology of takotsubo syndrome. Circulation. 2017;135(24):2426–41.

    PubMed  CrossRef  CAS  Google Scholar 

  66. Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary microcirculation in patients with takotsubo-like left ventricular dysfunction. Circ J. 2005;69(8):934–9.

    PubMed  CrossRef  Google Scholar 

  67. Bybee KA, Prasad A, Barsness GW, et al. Clinical characteristics and thrombolysis in myocardial infarction frame counts in women with transient left ventricular apical ballooning syndrome. Am J Cardiol. 2004;94(3):343–6.

    PubMed  CrossRef  Google Scholar 

  68. Vaccaro A, Despas F, Delmas C, et al. Direct evidences for sympathetic hyperactivity and baroreflex impairment in Tako Tsubo cardiopathy. PLoS One. 2014;9(3):e93278.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  69. Fihn SD, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2012;126:2354–471.

    CrossRef  Google Scholar 

  70. Johnson BDK, Kelsey SF, Bairey Merz CN. Clinical risk assessment in women: chest discomfort: report from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study. In: Shaw LJ, Redberg RF, editors. Coronary disease in women: evidence-based diagnosis and treatment. Totowa, NJ: Humana Press; 2003. p. 129–42.

    Google Scholar 

  71. Milner KA, Funk M, Richards S, Wilmes RM, Vaccarino V, Krumholz HM. Gender differences in symptom presentation associated with coronary heart disease. Am J Cardiol. 1999;84(4):396–9.

    PubMed  CrossRef  CAS  Google Scholar 

  72. AlBadri A, Leong D, Bairey Merz CN, et al. Typical angina is associated with greater coronary endothelial dysfunction but not abnormal vasodilatory reserve. Clin Cardiol. 2017. https://doi.org/10.1002/clc.22740.

  73. Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA. 2007;297(6):611–9.

    PubMed  CrossRef  CAS  Google Scholar 

  74. Goff DC Jr, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. Circulation. 2013;129(25 Suppl 2):S49–73.

    PubMed  CrossRef  Google Scholar 

  75. Stone NJ, Robinson J, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):3024–5.

    Google Scholar 

  76. Khaliq A, Johnson BD, Anderson RD, et al. Relationships between components of metabolic syndrome and coronary intravascular ultrasound atherosclerosis measures in women without obstructive coronary artery disease: the NHLBI-Sponsored Women’s Ischemia Syndrome Evaluation Study. Cardiovasc Endocrinol. 2015;4(2):45–52.

    PubMed  CrossRef  CAS  Google Scholar 

  77. Enkhmaa D, Wall D, Mehta PK, et al. Preeclampsia and vascular function: a window to future cardiovascular disease risk. J Womens Health (Larchmt). 2016;25(3):284–91.

    CrossRef  Google Scholar 

  78. Bellamy L, Casas JP, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007;335(7627):974.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  79. Mosca L, Benjamin EJ, Berra K, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update. Circulation. 2011;123(11):1243–62.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  80. Garcia M, Mulvagh SL, Merz CNB, Buring JE, Manson JE. Cardiovascular disease in women. Circ Res. 2016;118(8):1273–93.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  81. Kobayashi H, Giles JT, Arinuma Y, Yokoe I, Hirano M, Kobayashi Y. Cardiac magnetic resonance imaging abnormalities in patients with systemic lupus erythematosus: a preliminary report. Mod Rheumatol. 2010;20(3):319–23.

    PubMed  CrossRef  Google Scholar 

  82. Ishimori ML, Martin R, Berman DS, et al. Myocardial ischemia in the absence of obstructive coronary artery disease in systemic lupus erythematosus. JACC Cardiovasc Imaging. 2011;4(1):27–33.

    PubMed  CrossRef  Google Scholar 

  83. Ishimori ML, Anderson L, Weisman MH, Mehta PK, Bairey Merz CN, Wallace DJ. Microvascular angina: an underappreciated cause of SLE chest pain. J Rheumatol. 2013;40(5):746–7.

    PubMed  CrossRef  Google Scholar 

  84. Goykhman P, Mehta PK, Minissian M, Thomson LEJ, Berman DS, Ishimori ML, Wallace DJ, Weisman MH, Shufelt CL, Bairey Merz CN. Subendocardial ischemia and myocarditis in systemic lupus erythematosus detected by cardiac magnetic resonance imaging. J Rheumatol. 2012;39(2):448–50.

    PubMed  CrossRef  Google Scholar 

  85. Roman MJ, Shanker BA, Davis A, Lockshin MD, Sammaritano L, Simantov R, Crow MK, Schwartz JE, Paget SA, Devereux RB, Salmon JE. Prevalence and correlates of accelerated atherosclerosis in systemic lupus erythematosus. N Engl J Med. 2003;349:2399–406.

    PubMed  CrossRef  CAS  Google Scholar 

  86. Avina-Zubieta JA, Choi HK, Sadatsafavi M, Etminan M, Esdaile JM, Lacaille D. Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies. Arthritis Rheum. 2008;59(12):1690–7.

    PubMed  CrossRef  Google Scholar 

  87. Lichtman JH, Froelicher ES, Blumenthal JA, et al. Depression as a risk factor for poor prognosis among patients with acute coronary syndrome: systematic review and recommendations: a scientific statement from the American Heart Association. Circulation. 2014;129(12):1350–69.

    PubMed  CrossRef  Google Scholar 

  88. Yusuf S, Hawken S, Ôunpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52.

    PubMed  CrossRef  Google Scholar 

  89. Shah AJ, Ghasemzadeh N, Zaragoza-Macias E, et al. Sex and age differences in the association of depression with obstructive coronary artery disease and adverse cardiovascular events. J Am Heart Assoc. 2014;3(3):e000741.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  90. Mieres JH, Gulati M, Bairey Merz N, et al. Role of noninvasive testing in the clinical evaluation of women with suspected ischemic heart disease: a consensus statement from the American Heart Association. Circulation. 2014;130(4):350–79.

    PubMed  CrossRef  Google Scholar 

  91. Shaw LJ, Bairey Merz CN, Pepine CJ, et al. Insights from the NHLBI-Sponsored Women’s Ischemia Syndrome Evaluation (WISE) Study: part I: gender differences in traditional and novel risk factors, symptom evaluation, and gender-optimized diagnostic strategies. J Am Coll Cardiol. 2006;47(3 Suppl):S4–S20.

    PubMed  CrossRef  Google Scholar 

  92. Gulati M, Black HR, Shaw LJ, et al. The prognostic value of a nomogram for exercise capacity in women. N Engl J Med. 2005;353(5):468–75.

    PubMed  CrossRef  CAS  Google Scholar 

  93. Kohli P, Gulati M. Exercise stress testing in women: going back to the basics. Circulation. 2010;122(24):2570–80.

    PubMed  CrossRef  Google Scholar 

  94. Vaccarino V, Shah AJ, Rooks C, et al. Sex differences in mental stress-induced myocardial ischemia in young survivors of an acute myocardial infarction. Psychosom Med. 2014;76(3):171–80.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  95. Vaccarino V, Wilmot K, Al Mheid I, et al. Sex differences in mental stress-induced myocardial ischemia in patients with coronary heart disease. J Am Heart Assoc. 2016;5(9):pii: e003630.

    CrossRef  Google Scholar 

  96. Cortigiani L, Rigo F, Gherardi S, et al. Prognostic effect of coronary flow reserve in women versus men with chest pain syndrome and normal dipyridamole stress echocardiography. Am J Cardiol. 2010;106(12):1703–8.

    PubMed  CrossRef  Google Scholar 

  97. Ahmari SA, Bunch TJ, Modesto K, et al. Impact of individual and cumulative coronary risk factors on coronary flow reserve assessed by dobutamine stress echocardiography. Am J Cardiol. 2008;101(12):1694–9.

    PubMed  CrossRef  Google Scholar 

  98. Kaul S. Myocardial Contrast Echocardiography. Circulation. 2008;118(3):291–308.

    PubMed  CrossRef  Google Scholar 

  99. Thomas JD. Myocardial contrast echocardiography perfusion imaging. J Am Coll Cardiol. 2013;62(15):1362–4.

    PubMed  CrossRef  Google Scholar 

  100. Vogel R, Indermuhle A, Reinhardt J, et al. The quantification of absolute myocardial perfusion in humans by contrast echocardiography: algorithm and validation. J Am Coll Cardiol. 2005;45(5):754–62.

    PubMed  CrossRef  Google Scholar 

  101. Gould KL, Johnson NP, Bateman TM, et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol. 2013;62(18):1639–53.

    PubMed  CrossRef  Google Scholar 

  102. Rimoldi OE, Camici PG. Positron emission tomography for quantitation of myocardial perfusion. J Nucl Cardiol. 2004;11(4):482–90.

    PubMed  CrossRef  Google Scholar 

  103. Camici PG. Positron emission tomography and myocardial imaging. Heart. 2000;83(4):475–80.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  104. Camici P, Ferrannini E, Opie LH. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis. 1989;32(3):217–38.

    PubMed  CrossRef  CAS  Google Scholar 

  105. Cho SG, Park KS, Kim J, et al. Coronary flow reserve and relative flow reserve measured by N-13 ammonia PET for characterization of coronary artery disease. Ann Nucl Med. 2017;31(2):144–52.

    PubMed  CrossRef  CAS  Google Scholar 

  106. Garcia EV. Are absolute myocardial blood flow PET measurements ready for clinical use? J Nucl Cardiol. 2014;21(5):857–8.

    PubMed  CrossRef  Google Scholar 

  107. Branscomb E, Heller G, Bateman T, et al. Advances in cardiac imaging: taking a closer look at PET perfusion imaging : American Society of Nuclear Cardiology, Philadelphia, PA, 24 September 2010. J Nucl Cardiol. 2012;19(Suppl 1):S46–7.

    PubMed  Google Scholar 

  108. Nakazato R, Heo R, Leipsic J, Min JK. CFR and FFR assessment with PET and CTA: strengths and limitations. Curr Cardiol Rep. 2014;16(5):484.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  109. Chow BJ, Dorbala S, Di Carli MF, et al. Prognostic value of PET myocardial perfusion imaging in obese patients. JACC Cardiovasc Imaging. 2014;7(3):278–87.

    PubMed  CrossRef  Google Scholar 

  110. Camici PG, Rimoldi OE. The clinical value of myocardial blood flow measurement. J Nucl Med. 2009;50(7):1076–87.

    PubMed  CrossRef  Google Scholar 

  111. Geltman EM, Henes CG, Senneff MJ, Sobel BE, Bergmann SR. Increased myocardial perfusion at rest and diminished perfusion reserve in patients with angina and angiographically normal coronary arteries. J Am Coll Cardiol. 1990;16(3):586–95.

    PubMed  CrossRef  CAS  Google Scholar 

  112. Czernin J, Muller P, Chan S, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation. 1993;88(1):62–9.

    PubMed  CrossRef  CAS  Google Scholar 

  113. Murthy VL, Naya M, Foster CR, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124(20):2215–24.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  114. Naya M, Murthy VL, Taqueti VR, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med. 2014;55(2):248–55.

    PubMed  CrossRef  Google Scholar 

  115. Pepine CJ, Anderson RD, Sharaf BL, et al. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women’s Ischemia Syndrome Evaluation) study. J Am Coll Cardiol. 2010;55(25):2825–32.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  116. Sicari R, Rigo F, Cortigiani L, Gherardi S, Galderisi M, Picano E. Additive prognostic value of coronary flow reserve in patients with chest pain syndrome and normal or near-normal coronary arteries. Am J Cardiol. 2009;103(5):626–31.

    PubMed  CrossRef  Google Scholar 

  117. Taqueti VR, Hachamovitch R, Murthy VL, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation. 2015;131(1):19–27.

    PubMed  CrossRef  Google Scholar 

  118. Greenwood JP, Maredia N, Younger JF, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet (London, England). 2012;379(9814):453–60.

    CrossRef  Google Scholar 

  119. Panting JR, Gatehouse PD, Yang GZ, et al. Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med. 2002;346:1948–53.

    PubMed  CrossRef  Google Scholar 

  120. Pilz G, Klos M, Ali E, Hoefling B, Scheck R, Bernhardt P. Angiographic correlations of patients with small vessel disease diagnosed by adenosine-stress cardiac magnetic resonance imaging. J Cardiovasc Magn Reson. 2008;10:8.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  121. Thomson LE, Wei J, Agarwal M, et al. Cardiac magnetic resonance myocardial perfusion reserve index is reduced in women with coronary microvascular dysfunction. A National Heart, Lung, and Blood Institute-sponsored study from the Women’s Ischemia Syndrome Evaluation. Circ Cardiovasc Imaging. 2015;8(4):pii: e002481.

    CrossRef  Google Scholar 

  122. Tanriverdi H, Evrengul H, Kuru O, et al. Cigarette smoking induced oxidative stress may impair endothelial function and coronary blood flow in angiographically normal coronary arteries. Circ J. 2006;70(5):593–9.

    PubMed  CrossRef  CAS  Google Scholar 

  123. Vichova T, Motovska Z. Oxidative stress: predictive marker for coronary artery disease. Exp Clin Cardiol. 2013;18(2):e88–91.

    PubMed  PubMed Central  Google Scholar 

  124. Reho JJ, Rahmouni K. Oxidative and inflammatory signals in obesity-associated vascular abnormalities. Clin Sci (Lond). 2017;131(14):1689–700.

    CrossRef  CAS  Google Scholar 

  125. Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ J. 2009;73:411–8.

    PubMed  CrossRef  CAS  Google Scholar 

  126. Molyneux CA, Glyn MC, Ward BJ. Oxidative stress and cardiac microvascular structure in ischemia and reperfusion: the protective effect of antioxidant vitamins. Microvasc Res. 2002;64(2):265–77.

    PubMed  CrossRef  CAS  Google Scholar 

  127. Bohlen HG, Zhou X, Unthank JL, Miller SJ, Bills R. Transfer of nitric oxide by blood from upstream to downstream resistance vessels causes microvascular dilation. Am J Physiol Heart Circ Physiol. 2009;297(4):H1337–46.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  128. Mkhwanazi BN, Serumula MR, Myburg RB, Van Heerden FR, Musabayane CT. Antioxidant effects of maslinic acid in livers, hearts and kidneys of streptozotocin-induced diabetic rats: effects on kidney function. Oxidative Med Cell Longev. 2014;36(3):419–31.

    CAS  Google Scholar 

  129. Dhawan SS, Eshtehardi P, McDaniel MC, et al. The role of plasma aminothiols in the prediction of coronary microvascular dysfunction and plaque vulnerability. Atherosclerosis. 2011;219(1):266–72.

    PubMed  CrossRef  CAS  Google Scholar 

  130. Ignarro LJ, Napoli C. Novel features on nitric oxide, endothelial nitric oxide synthase and atherosclerosis. Curr Atheroscler Rep. 2004;6:278–87.

    CrossRef  Google Scholar 

  131. Lekakis J, Abraham P, Balbarini A, et al. Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on Peripheral Circulation. Eur J Cardiovasc Prev Rehabil. 2011;18(6):775–89.

    PubMed  CrossRef  Google Scholar 

  132. Wang H, Liu J. Plasma asymmetric dimethylarginine and L-arginine levels in Chinese patients with essential hypertension without coronary artery disease. J Cardiovasc Dis Res. 2011;2(3):177–80.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  133. Sitia S, Tomasoni L, Atzeni F, et al. From endothelial dysfunction to atherosclerosis. Autoimmun Rev. 2010;9(12):830–4.

    PubMed  CrossRef  CAS  Google Scholar 

  134. Sen N, Poyraz F, Tavil Y, et al. Carotid intima-media thickness in patients with cardiac syndrome X and its association with high circulating levels of asymmetric dimethylarginine. Atherosclerosis. 2009;204(2):e82–5.

    PubMed  CrossRef  CAS  Google Scholar 

  135. Ridker P, Cook N. Clinical usefulness of very high and very low levels of C-reactive protein across the full range of Framingham Risk Scores. Circulation. 2004;109(16):1955–9.

    PubMed  CrossRef  Google Scholar 

  136. Tsimikas S, Willerson JT, Ridker PM. C-reactive protein and other emerging blood biomarkers to optimize risk stratification of vulnerable patients. J Am Coll Cardiol. 2006;47(Suppl. 8):C19–31.

    PubMed  CrossRef  CAS  Google Scholar 

  137. Johnson BD, Kip KE, Marroquin OC, et al. Serum amyloid A as a predictor of coronary artery disease and cardiovascular outcome in women: the National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation. 2004;109(6):726–32.

    PubMed  CrossRef  CAS  Google Scholar 

  138. Mekonnen G, Hayek SS, Mehta PK, et al. Circulating progenitor cells and coronary microvascular dysfunction: results from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation—Coronary Vascular Dysfunction Study (WISE-CVD). Atherosclerosis. 2016;253:111–7.

    PubMed  CrossRef  CAS  Google Scholar 

  139. Flavahan NA. Atherosclerosis or lipoprotein-induced endothelial dysfunction: potential mechanism underlying reduction in ADRF/nitric oxide activity. Circulation. 1992;85:1927–38.

    PubMed  CrossRef  CAS  Google Scholar 

  140. Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic arteries. N Engl J Med. 1986;315:1046–51.

    PubMed  CrossRef  CAS  Google Scholar 

  141. Kern MJ, Lerman A, Bech JW, et al. Physiological assessment of coronary artery disease in the cardiac catheterization laboratory: a scientific statement from the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology. Circulation. 2006;114(12):1321–41.

    PubMed  CrossRef  Google Scholar 

  142. Chareonthaitawee P, Kaufmann PA, Rimoldi O, Camici PG. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res. 2001;50(1):151–61.

    PubMed  CrossRef  CAS  Google Scholar 

  143. Lee JM, Jung JH, Hwang D, et al. Coronary Flow Reserve and Microcirculatory Resistance in Patients With Intermediate Coronary Stenosis. J Am Coll Cardiol. 2016;67(10):1158–69.

    PubMed  CrossRef  Google Scholar 

  144. Murakami T, Mizuno S, Kaku B. Clinical morbidities in subjects with Doppler-evaluated endothelial dysfunction of coronary artery. J Am Coll Cardiol. 1998;31(s1):419A.

    CrossRef  Google Scholar 

  145. Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR Jr, Lerman A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation. 2000;101:948–54.

    PubMed  CrossRef  CAS  Google Scholar 

  146. von Mering GO, Arant CB, SP MG, Miller DM, CNB M, Kelsey SF, Reichek N, Reis SE, Rogers WJ, Sharaf BL, Sopko G, Kerensky RA. Abnormal coronary vasomotion in response to acetylcholine predicts increased cardiac events in women: data from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study. J Am Coll Cardiol. 2001;37:243A.

    CrossRef  Google Scholar 

  147. Ong P, Athanasiadis A, Borgulya G, Voehringer M, Sechtem U. 3-year follow-up of patients with coronary artery spasm as cause of acute coronary syndrome: the CASPAR (coronary artery spasm in patients with acute coronary syndrome) study follow-up. J Am Coll Cardiol. 2011;57:147–52.

    PubMed  CrossRef  Google Scholar 

  148. Wei J, Mehta PK, Johnson BD, et al. Safety of coronary reactivity testing in women with no obstructive coronary artery disease: results from the NHLBI-sponsored WISE (Women’s Ischemia Syndrome Evaluation) study. JACC Cardiovasc Interv. 2012;5(6):646–53.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  149. Haskell WL, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Assoication. Med Sci Sports Exerc. 2007;39(8):1423–34.

    PubMed  CrossRef  Google Scholar 

  150. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112(17):2735–52.

    PubMed  CrossRef  Google Scholar 

  151. Green DJ, Walsh JH, Maiorana A, Best MJ, Taylor RR, O’Driscoll JG. Exercise-induced improvement in endothelial dysfunction is not mediated by changes in CV risk factors: pooled analysis of diverse patient populations. Am J Physiol Heart Circ Physiol. 2003;285:H2679–87.

    PubMed  CrossRef  CAS  Google Scholar 

  152. Hambrecht R, Wolf A, Gielen S, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med. 2000;342:454–60.

    PubMed  CrossRef  CAS  Google Scholar 

  153. Messner B, Bernhard D. Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol. 2014;34(3):509–15.

    PubMed  CrossRef  CAS  Google Scholar 

  154. Morita H, Ikeda H, Haramaki N, Eguchi H, Imaizumi T. Only two-week smoking cessation improves platelet aggregability and intraplatelet redox imbalance of long-term smokers. J Am Coll Cardiol. 2005;45(4):589–94.

    PubMed  CrossRef  Google Scholar 

  155. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(25 Suppl 2):S1–45.

    PubMed  CrossRef  Google Scholar 

  156. Fabian E, Varga A, Picano E, Vajo Z, Ronaszeki A, Csanady M. Effect of simvastatin on endothelial function in cardiac syndrome X patients. Am J Cardiol. 2004;94(5):652–5.

    PubMed  CrossRef  CAS  Google Scholar 

  157. Caliskan M, Erdogan D, Gullu H, et al. Effects of atorvastatin on coronary flow reserve in patients with slow coronary flow. Clin Cardiol. 2007;30(9):475–9.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  158. John S, Schlaich M, Langenfeld M, et al. Increased bioavailability of nitric oxide after lipid-lowering therapy in hypercholesterolemic patients: a randomized, placebo-controlled, double-blind study. Circulation. 1998;98:211–6.

    PubMed  CrossRef  CAS  Google Scholar 

  159. Masumoto A, Hirooka Y, Hironaga K, et al. Effect of pravastatin on endothelial function in patients with coronary artery disease (cholesterol-independent effect of pravastatin). Am J Cardiol. 2001;88(11):1291–4.

    PubMed  CrossRef  CAS  Google Scholar 

  160. Romano M, Mezzetti A, Marulli C, et al. Fluvastatin reduces soluble P-selectin and ICAM-1 levels in hypercholesterolemic patients: role of nitric oxide. J Invest Med. 2000;48(3):183–9.

    CAS  Google Scholar 

  161. Kayikcioglu M, Payzin S, Yavuzgil O, Kultursay H, Can LH, Soydan I. Benefits of statin treatment in cardiac syndrome-X. Eur Heart J. 2003;24(22):1999–2005.

    PubMed  CrossRef  CAS  Google Scholar 

  162. Bugiardini R, Bairey Merz CN. Angina with “normal” coronary arteries: a changing philosophy. JAMA. 2005;293(4):477–84.

    PubMed  CrossRef  CAS  Google Scholar 

  163. Fraker TD Jr, Fihn SD, Chronic Stable Angina Writing C, et al. 2007 chronic angina focused update of the ACC/AHA 2002 guidelines for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Writing Group to develop the focused update of the 2002 guidelines for the management of patients with chronic stable angina. J Am Coll Cardiol. 2007;50(23):2264–74.

    PubMed  CrossRef  Google Scholar 

  164. Kalinowski L, Dobrucki LW, Szczepanska-Konkel M, et al. Third-generation beta-blockers stimulate nitric oxide release from endothelial cells through ATP efflux: a novel mechanism for antihypertensive action. Circulation. 2003;107(21):2747–52.

    PubMed  CrossRef  CAS  Google Scholar 

  165. Matsuda Y, Akita H, Terashima M, Shiga N, Kanazawa K, Yokoyama M. Carvedilol improves endothelium-dependent dilatation in patients with coronary artery disease. Am Heart J. 2000;140(5):753–9.

    PubMed  CrossRef  CAS  Google Scholar 

  166. Togni M, Vigorito F, Windecker S, et al. Does the beta-blocker nebivolol increase coronary flow reserve? Cardiovasc Drugs Ther. 2007;21(2):99–108.

    PubMed  CrossRef  CAS  Google Scholar 

  167. Hung OY, Molony D, Corban MT, et al. Comprehensive assessment of coronary plaque progression with advanced intravascular imaging, physiological measures, and wall shear stress: a pilot double-blinded randomized controlled clinical trial of nebivolol versus atenolol in nonobstructive coronary artery disease. J Am Heart Assoc. 2016;5(1):pii: e002764.

    CrossRef  Google Scholar 

  168. Chen JW, Hsu NW, Wu TC, Lin SJ, Chang MS. Long-term angiotensin-converting enzyme inhibition reduces plasma asymmetric dimethylarginine and improves endothelial nitric oxide bioavailability and coronary microvascular function in patients with syndrome X. Am J Cardiol. 2002;90(9):974–82.

    PubMed  CrossRef  CAS  Google Scholar 

  169. Pauly DF, Johnson BD, Anderson RD, et al. In women with symptoms of cardiac ischemia, nonobstructive coronary arteries, and microvascular dysfunction, angiotensin-converting enzyme inhibition is associated with improved microvascular function: A double-blind randomized study from the National Heart, Lung and Blood Institute Women’s Ischemia Syndrome Evaluation (WISE). Am Heart J. 2011;162(4):678–84.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  170. Pizzi C, Manfrini O, Fontana F, Bugiardini R. Angiotensin-converting enzyme inhibitors and 3-hydroxy-3-methylglutaryl coenzyme A reductase in cardiac Syndrome X: role of superoxide dismutase activity. Circulation. 2004;109(1):53–8.

    PubMed  CrossRef  CAS  Google Scholar 

  171. Higuchi T, Abletshauser C, Nekolla SG, Schwaiger M, Bengel FM. Effect of the angiotensin receptor blocker Valsartan on coronary microvascular flow reserve in moderately hypertensive patients with stable coronary artery disease. Microcirculation. 2007;14(8):805–12.

    PubMed  CrossRef  CAS  Google Scholar 

  172. Naoumova RP, Kindler H, Leccisotti L, et al. Pioglitazone improves myocardial blood flow and glucose utilization in nondiabetic patients with combined hyperlipidemia: a randomized, double-blind, placebo-controlled study. J Am Coll Cardiol. 2007;50(21):2051–8.

    PubMed  CrossRef  CAS  Google Scholar 

  173. Cannon RO 3rd, Watson RM, Rosing DR, Epstein SE. Efficacy of calcium channel blocker therapy for angina pectoris resulting from small-vessel coronary artery disease and abnormal vasodilator reserve. Am J Cardiol. 1985;56(4):242–6.

    PubMed  CrossRef  Google Scholar 

  174. Ozcelik F, Altun A, Ozbay G. Antianginal and anti-ischemic effects of nisoldipine and ramipril in patients with syndrome X. Clin Cardiol. 1999;22(5):361–5.

    PubMed  CrossRef  CAS  Google Scholar 

  175. Bugiardini R, Borghi A, Biagetti L, Puddu P. Comparison of verapamil versus propranolol therapy in syndrome X. Am J Cardiol. 1989;63(5):286–90.

    PubMed  CrossRef  CAS  Google Scholar 

  176. Lanza GA, Colonna G, Pasceri V, Maseri A. Atenolol versus amlodipine versus isosorbide-5-mononitrate on anginal symptoms in syndrome X. Am J Cardiol. 1999;84(7):854–6. A858

    PubMed  CrossRef  CAS  Google Scholar 

  177. Stone PH. Calcium antagonists for Prinzmetal’s variant angina, unstable angina and silent myocardial ischemia: therapeutic tool and probe for identification of pathophysiologic mechanisms. Am J Cardiol. 1987;59(3):101B–15B.

    PubMed  CrossRef  CAS  Google Scholar 

  178. Parodi O, Simonetti I, Michelassi C, et al. Comparison of verapamil and propranolol therapy for angina pectoris at rest: a randomized, multiple-crossover, controlled trial in the coronary care unit. Am J Cardiol. 1986;57(11):899–906.

    PubMed  CrossRef  CAS  Google Scholar 

  179. Pepine CJ, Feldman RL, Whittle J, Curry RC, Conti CR. Effect of diltiazem in patients with variant angina: a randomized double-blind trial. Am Heart J. 1981;101(6):719–25.

    PubMed  CrossRef  CAS  Google Scholar 

  180. Yasue H, Omote S, Takizawa A, Nagao M, Miwa K, Tanaka S. Exertional angina pectoris caused by coronary arterial spasm: effects of various drugs. Am J Cardiol. 1979;43(3):647–52.

    PubMed  CrossRef  CAS  Google Scholar 

  181. Lerman A, Burnett JC Jr, Higano ST, McKinley LJ, Holmes DR Jr. Long-term L-arginine supplementation improves small-vessel coronary endothelial function in humans. Circulation. 1998;97(21):2123–8.

    PubMed  CrossRef  CAS  Google Scholar 

  182. Kaski JC, Rosano GM, Collins P, Nihoyannopoulos P, Maseri A, Poole-Wilson PA. Cardiac syndrome X: clinical characteristics and left ventricular function. Long-term follow-up study. J Am Coll Cardiol. 1995;25(4):807–14.

    PubMed  CrossRef  CAS  Google Scholar 

  183. Chaitman BR. Ranolazine for the treatment of chronic angina and potential use in other cardiovascular conditions. Circulation. 2006;113(20):2462–72.

    PubMed  CrossRef  Google Scholar 

  184. Mehta PK, Goykhman P, Thomson LE, et al. Ranolazine improves angina in women with evidence of myocardial ischemia but no obstructive coronary artery disease. J Am Coll Cardiol Img. 2011;4(5):514–22.

    CrossRef  Google Scholar 

  185. Bairey Merz CN, Handberg EM, Shufelt CL, et al. A randomized, placebo-controlled trial of late Na current inhibition (ranolazine) in coronary microvascular dysfunction (CMD): impact on angina and myocardial perfusion reserve. Eur Heart J. 2016;37(19):1504–13.

    PubMed  CrossRef  CAS  Google Scholar 

  186. Roqué M, Heras M, Roig E, et al. Short-term effects of transdermal estrogen replacement therapy on coronary vascular reactivity in postmenopausal women with angina pectoris and normal results on coronary angiograms. J Am Coll Cardiol. 1998;31(1):139–43.

    PubMed  CrossRef  Google Scholar 

  187. Hulley S, Grady D, Bush T, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA. 1998;280(7):605–12.

    PubMed  CrossRef  CAS  Google Scholar 

  188. Investigators WHI. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative Randomized Controlled Trial. JAMA. 2002;288:321–33.

    CrossRef  Google Scholar 

  189. Anderson GL, Limacher M, Assaf AR, et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. JAMA. 2004;291(14):1701–12.

    PubMed  CrossRef  CAS  Google Scholar 

  190. Wolff EF, He Y, Black DM, et al. Self-reported menopausal symptoms, coronary artery calcification, and carotid intima-media thickness in recently menopausal women screened for the Kronos early estrogen prevention study (KEEPS). Fertil Steril. 2013;99(5):1385–91.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  191. Sulfi S, Timmis AD. Ivabradine—the first selective sinus node I(f) channel inhibitor in the treatment of stable angina. Int J Clin Pract. 2006;60(2):222–8.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  192. Fox K, Ford I, Steg PG, Tendera M, Ferrari R, Investigators B. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet (London, England). 2008;372(9641):807–16.

    CrossRef  CAS  Google Scholar 

  193. Swedberg K, Komajda M, Bohm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet (London, England). 2010;376(9744):875–85.

    CrossRef  CAS  Google Scholar 

  194. Tardif JC, Ford I, Tendera M, Bourassa MG, Fox K, Investigators I. Efficacy of ivabradine, a new selective I(f) inhibitor, compared with atenolol in patients with chronic stable angina. Eur Heart J. 2005;26(23):2529–36.

    PubMed  CrossRef  CAS  Google Scholar 

  195. Skalidis EI, Hamilos MI, Chlouverakis G, Zacharis EA, Vardas PE. Ivabradine improves coronary flow reserve in patients with stable coronary artery disease. Atherosclerosis. 2011;215(1):160–5.

    PubMed  CrossRef  CAS  Google Scholar 

  196. Villano A, Di Franco A, Nerla R, et al. Effects of ivabradine and ranolazine in patients with microvascular angina pectoris. Am J Cardiol. 2013;112(1):8–13.

    PubMed  CrossRef  CAS  Google Scholar 

  197. Cannon RO 3rd, Quyyumi AA, Mincemoyer R, et al. Imipramine in patients with chest pain despite normal coronary angiograms. N Engl J Med. 1994;330(20):1411–7.

    PubMed  CrossRef  Google Scholar 

  198. Cox ID, Hann CM, Kaski JC. Low dose imipramine improves chest pain but not quality of life in patients with angina and normal coronary angiograms. Eur Heart J. 1998;19(2):250–4.

    PubMed  CrossRef  CAS  Google Scholar 

  199. Hongo M, Takenaka H, Uchikawa S, Nakatsuka T, Watanabe N, Sekiguchi M. Coronary microvascular response to intracoronary administration of nicorandil. Am J Cardiol. 1995;75(4):246–50.

    PubMed  CrossRef  CAS  Google Scholar 

  200. Chen JW, Lee WL, Hsu NW, et al. Effects of short-term treatment of nicorandil on exercise-induced myocardial ischemia and abnormal cardiac autonomic activity in microvascular angina. Am J Cardiol. 1997;80(1):32–8.

    PubMed  CrossRef  CAS  Google Scholar 

  201. Vicari RM, Chaitman B, Keefe D, et al. Efficacy and safety of fasudil in patients with stable angina: a double-blind, placebo-controlled, phase 2 trial. J Am Coll Cardiol. 2005;46(10):1803–11.

    PubMed  CrossRef  CAS  Google Scholar 

  202. Fukumoto Y, Mohri M, Inokuchi K, et al. Anti-ischemic effects of fasudil, a specific Rho-kinase inhibitor, in patients with stable effort angina. J Cardiovasc Pharmacol. 2007;49(3):117–21.

    PubMed  CrossRef  CAS  Google Scholar 

  203. Shimokawa H, Hiramori K, Iinuma H, et al. Anti-anginal effect of fasudil, a Rho-kinase inhibitor, in patients with stable effort angina: a multicenter study. J Cardiovasc Pharmacol. 2002;40(5):751–61.

    PubMed  CrossRef  CAS  Google Scholar 

  204. Shimokawa H, Satoh K. 2015 ATVB Plenary Lecture: translational research on rho-kinase in cardiovascular medicine. Arterioscler Thromb Vasc Biol. 2015;35(8):1756–69.

    PubMed  CrossRef  CAS  Google Scholar 

  205. Kantor PF, Lucien A, Kozak R, Lopaschuk GD. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res. 2000;86(5):580–8.

    PubMed  CrossRef  CAS  Google Scholar 

  206. Rogacka D, Guzik P, Wykretowicz A, Rzezniczak J, Dziarmaga M, Wysocki H. Effects of trimetazidine on clinical symptoms and tolerance of exercise of patients with syndrome X: a preliminary study. Coron Artery Dis. 2000;11(2):171–7.

    PubMed  CrossRef  CAS  Google Scholar 

  207. Nalbantgil S, Altinti&gbreve A, Yilmaz H, Nalbantgil II, Onder R. The effect of trimetazidine in the treatment of microvascular angina. Int J Angiol. 1999;8(1):40–3.

    Google Scholar 

  208. Leonardo F, Fragasso G, Rossetti E, et al. Comparison of trimetazidine with atenolol in patients with syndrome X: effects on diastolic function and exercise tolerance. Cardiologia. 1999;44(12):1065–9.

    PubMed  CAS  Google Scholar 

  209. Peng S, Zhao M, Wan J, Fang Q, Fang D, Li K. The efficacy of trimetazidine on stable angina pectoris: a meta-analysis of randomized clinical trials. Int J Cardiol. 2014;177(3):780–5.

    PubMed  CrossRef  Google Scholar 

  210. Ciapponi A, Pizarro R, Harrison J. Trimetazidine for stable angina. Cochrane Database Syst Rev. 2005;(4):Cd003614.

    Google Scholar 

  211. Stys TP, Lawson WE, Hui JC, et al. Effects of enhanced external counterpulsation on stress radionuclide coronary perfusion and exercise capacity in chronic stable angina pectoris. Am J Cardiol. 2002;89(7):822–4.

    PubMed  CrossRef  Google Scholar 

  212. Arora RR, Chou TM, Jain D, et al. The multicenter study of enhanced external counterpulsation (MUST-EECP): effect of EECP on exercise-induced myocardial ischemia and anginal episodes. J Am Coll Cardiol. 1999;33(7):1833–40.

    PubMed  CrossRef  CAS  Google Scholar 

  213. Urano H, Ikeda H, Ueno T, Matsumoto T, Murohara T, Imaizumi T. Enhanced external counterpulsation improves exercise tolerance, reduces exercise-induced myocardial ischemia and improves left ventricular diastolic filling in patients with coronary artery disease. J Am Coll Cardiol. 2001;37(1):93–9.

    PubMed  CrossRef  CAS  Google Scholar 

  214. Lawson WE, Hui JC, Zheng ZS, et al. Three-year sustained benefit from enhanced external counterpulsation in chronic angina pectoris. Am J Cardiol. 1995;75(12):840–1.

    PubMed  CrossRef  CAS  Google Scholar 

  215. Beck DT, Martin JS, Casey DP, Avery JC, Sardina PD, Braith RW. Enhanced external counterpulsation improves endothelial function and exercise capacity in patients with ischaemic left ventricular dysfunction. Clin Exp Pharmacol Physiol. 2014;41(9):628–36.

    PubMed  PubMed Central  CAS  Google Scholar 

  216. Loh PH, Cleland JG, Louis AA, et al. Enhanced external counterpulsation in the treatment of chronic refractory angina: a long-term follow-up outcome from the International Enhanced External Counterpulsation Patient Registry. Clin Cardiol. 2008;31(4):159–64.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  217. Lawson WE, Barsness G, Michaels AD, et al. Effectiveness of repeat enhanced external counterpulsation for refractory angina in patients failing to complete an initial course of therapy. Cardiology. 2007;108(3):170–5.

    PubMed  CrossRef  Google Scholar 

  218. Kang H-J, Kim H-S, Zhang S-Y, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet. 2004;363(9411):751–6.

    PubMed  CrossRef  CAS  Google Scholar 

  219. Antonios TF, Singer DR, Markandu ND, Mortimer PS, MacGregor GA. Structural skin capillary rarefaction in essential hypertension. Hypertension. 1999;33(4):998–1001.

    PubMed  CrossRef  CAS  Google Scholar 

  220. Pries AR, Badimon L, Bugiardini R, et al. Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J. 2015;36(45):3134–46.

    PubMed  CrossRef  CAS  Google Scholar 

  221. Kanazawa H, Tseliou E, Malliaras K, et al. Cellular postconditioning: allogeneic cardiosphere-derived cells reduce infarct size and attenuate microvascular obstruction when administered after reperfusion in pigs with acute myocardial infarction. Circ Heart Fail. 2015;8(2):322–32.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  222. Asbury EA, Kanji N, Ernst E, Barbir M, Collins P. Autogenic training to manage symptomology in women with chest pain and normal coronary arteries. Menopause. 2009;16(1):60–5.

    PubMed  CrossRef  Google Scholar 

  223. Asbury EA, Webb CM, Collins P. Group support to improve psychosocial well-being and primary-care demands among women with cardiac syndrome X. Climacteric. 2011;14(1):100–4.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grant K23HL105787.

Conflicts: Lee: none; Khambhati: none; Mehta: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puja K. Mehta M.D., F.A.C.C., F.A.H.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Lee, S.K., Khambhati, J., Mehta, P.K. (2018). Angina and Ischemia in Women with No Obstructive Coronary Artery Disease. In: Mehta, J., McSweeney, J. (eds) Gender Differences in the Pathogenesis and Management of Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-71135-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71135-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71134-8

  • Online ISBN: 978-3-319-71135-5

  • eBook Packages: MedicineMedicine (R0)