Angina and Ischemia in Women with No Obstructive Coronary Artery Disease

  • Suegene K. Lee
  • Jay Khambhati
  • Puja K. MehtaEmail author


Ischemic heart disease (IHD) continues to be a major health threat to women worldwide. Sex-specific differences in IHD presentation, pathophysiology, treatment, and outcomes have increasingly been identified. While IHD care has focused around detection and treatment of obstructive coronary artery disease (CAD), it is clear that symptomatic patients with evidence of ischemia do not always have obstructive CAD. This problem appears to disproportionately impact women; compared to men, women who present with acute coronary syndrome/unstable angina as well as stable angina are more likely to have non-obstructive CAD on coronary angiography, and yet have a high IHD morbidity and mortality. Data indicates that coronary microvascular dysfunction (CMD), due to endothelial and non-endothelial dependent mechanisms, may be an explanation in at least half of these symptomatic women who have evidence of myocardial ischemia. CMD is associated with adverse cardiovascular outcomes, including myocardial infarction, stroke, and heart failure. This chapter focuses on CMD diagnosis and treatment (pharmacological and non-pharmacological approaches) in women with no obstructive CAD.


Microvascular angina Endothelial dysfunction Women and heart disease 



This work was supported by NIH grant K23HL105787.

Conflicts: Lee: none; Khambhati: none; Mehta: none.


  1. 1.
    Bairey Merz CN. Sex, death, and the diagnosis gap. Circulation. 2014;130(9):740–2.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bairey Merz CN, Pepine CJ, Walsh MN, Fleg JL. Ischemia and No Obstructive Coronary Artery Disease (INOCA): developing evidence-based therapies and research agenda for the next decade. Circulation. 2017;135(11):1075–92.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Pepine CJ, Ferdinand KC, Shaw LJ, et al. Emergence of nonobstructive coronary artery disease: a woman’s problem and need for change in definition on angiography. J Am Coll Cardiol. 2015;66(17):1918–33.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bucholz EM, Butala NM, Rathore SS, Dreyer RP, Lansky AJ, Krumholz HM. Sex differences in long-term mortality after myocardial infarction: a systematic review. Circulation. 2014;130(9):757–67.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Mehta PK, Wei J, Wenger NK. Ischemic heart disease in women: a focus on risk factors. Trends Cardiovasc Med. 2015;25(2):140–51.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Mehta LS, Beckie TM, DeVon HA, et al. Acute myocardial infarction in women: a scientific statement from the American Heart Association. Circulation. 2016;133(9):916–47.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Phan A, Shufelt C, Merz CN. Persistent chest pain and no obstructive coronary artery disease. JAMA. 2009;301(14):1468–74.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Humphries KH, Pu A, Gao M, Carere RG, Pilote L. Angina with “normal” coronary arteries: sex differences in outcomes. Am Heart J. 2008;155(2):375–81.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Reis SE, Holubkov R, Conrad Smith AJ, et al. Coronary microvascular dysfunction is highly prevalent in women with chest pain in the absence of coronary artery disease: results from the NHLBI WISE study. Am Heart J. 2001;141(5):735–41.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hasdai D, Holmes DR Jr, Higano ST, Burnett JC Jr, Lerman A. Prevalence of coronary blood flow reserve abnormalities among patients with nonobstructive coronary artery disease and chest pain. Mayo Clin Proc. 1998;73(12):1133–40.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ong P, Athanasiadis A, Borgulya G, Mahrholdt H, Kaski JC, Sechtem U. High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries. The ACOVA Study (Abnormal COronary VAsomotion in patients with stable angina and unobstructed coronary arteries). J Am Coll Cardiol. 2012;59(7):655–62.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kemp HG Jr. Left ventricular function in patients with the anginal syndrome and normal coronary arteriograms. Am J Cardiol. 1973;32(3):375–6.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356(8):830–40.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Jones E, Eteiba W, Merz NB. Cardiac syndrome X and microvascular coronary dysfunction. Trends Cardiovasc Med. 2012;22(6):161–8.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Murthy VL, Naya M, Taqueti VR, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129(24):2518–27.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Patel MR, Dai D, Hernandez AF, et al. Prevalence and predictors of nonobstructive coronary artery disease identified with coronary angiography in contemporary clinical practice. Am Heart J. 2014;167(6):846–852.e842.PubMedCrossRefGoogle Scholar
  17. 17.
    Patel MR, Peterson ED, Dai D, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362(10):886–95.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Beltrame JF, Crea F, Kaski JC, et al. International standardization of diagnostic criteria for vasospastic angina. Eur Heart J. 2015;38(33):2565–8.Google Scholar
  19. 19.
    Beltrame JF, Crea F, Kaski JC, et al. The who, what, why, when, how and where of vasospastic angina. Circ J. 2016;80(2):289–98.PubMedCrossRefGoogle Scholar
  20. 20.
    Marti CN, Gheorghiade M, Kalogeropoulos AP, Georgiopoulou VV, Quyyumi AA, Butler J. Endothelial dysfunction, arterial stiffness, and heart failure. J Am Coll Cardiol. 2012;60(16):1455–69.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Quyyumi AA. Endothelial function in health and disease: new insights into the genesis of cardiovascular disease. Am J Med. 1998;105(1A):32S–9S.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Ozkor MA, Murrow JR, Rahman AM, et al. Endothelium-derived hyperpolarizing factor determines resting and stimulated forearm vasodilator tone in health and in disease. Circulation. 2011;123(20):2244–53.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Paneni F, Diaz Canestro C, Libby P, Luscher TF, Camici GG. The aging cardiovascular system: understanding it at the cellular and clinical levels. J Am Coll Cardiol. 2017;69(15):1952–67.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Matsuzawa Y, Guddeti RR, Kwon TG, Lerman LO, Lerman A. Treating coronary disease and the impact of endothelial dysfunction. Prog Cardiovasc Dis. 2015;57(5):431–42.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Flammer AJ, Anderson T, Celermajer DS, et al. The assessment of endothelial function: from research into clinical practice. Circulation. 2012;126(6):753–67.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Yoshino S, Cilluffo R, Prasad M, et al. Sex-specific genetic variants are associated with coronary endothelial dysfunction. J Am Heart Assoc. 2016;5(4):e002544.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Sara JD, Widmer RJ, Matsuzawa Y, Lennon RJ, Lerman LO, Lerman A. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC Cardiovasc Interv. 2015;8(11):1445–53.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bairey Merz CN, Shaw LJ, Reis SE, et al. Insights from the NHLBI-Sponsored Women’s Ischemia Syndrome Evaluation (WISE) Study: part II: gender differences in presentation, diagnosis, and outcome with regard to gender-based pathophysiology of atherosclerosis and macrovascular and microvascular coronary disease. J Am Coll Cardiol. 2006;47(3 Suppl):S21–9.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Crea F, Bairey Merz CN, Beltrame JF, et al. The parallel tales of microvascular angina and heart failure with preserved ejection fraction: a paradigm shift. Eur Heart J. 2017;38(7):473–7.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Nelson MD, Szczepaniak LS, Wei J, et al. Diastolic dysfunction in women with signs and symptoms of ischemia in the absence of obstructive coronary artery disease: a hypothesis-generating study. Circ Cardiovasc Imaging. 2014;7(3):510–6.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Taqueti VR, Di Carli MF. Clinical significance of noninvasive coronary flow reserve assessment in patients with ischemic heart disease. Curr Opin Cardiol. 2016;31(6):662–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Lerman A, Zeiher AM. Endothelial function: cardiac events. Circulation. 2005;111(3):363–8.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    McCraty R, Atkinson M, Tiller WA, Rein G, Watkins AD. The effects of emotions on short-term power spectrum analysis of heart rate variability. Am J Cardiol. 1995;76(14):1089–93.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Pagani M, Furlan R, Pizzinelli P, Crivellaro W, Cerutti S, Malliani A. Spectral analysis of R-R and arterial pressure variabilities to assess sympatho-vagal interaction during mental stress in humans. J Hypertens Suppl. 1989;7(6):S14–5.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Pagani M, Mazzuero G, Ferrari A, et al. Sympathovagal interaction during mental stress. A study using spectral analysis of heart rate variability in healthy control subjects and patients with a prior myocardial infarction. Circulation. 1991;83(4 Suppl):II43–51.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Tuininga YS, Crijns HJ, Brouwer J, et al. Evaluation of importance of central effects of atenolol and metoprolol measured by heart rate variability during mental performance tasks, physical exercise, and daily life in stable postinfarct patients. Circulation. 1995;92(12):3415–23.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Krantz DS, Kop WJ, Santiago HT, Gottdiener JS. Mental stress as a trigger of myocardial ischemia and infarction. Cardiol Clin. 1996;14(2):271–87.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Rozanski A, Bairey CN, Krantz DS, et al. Mental stress and the induction of silent myocardial ischemia in patients with coronary artery disease. N Engl J Med. 1988;318(16):1005–12.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ramadan R, Sheps D, Esteves F, et al. Myocardial ischemia during mental stress: role of coronary artery disease burden and vasomotion. J Am Heart Assoc. 2013;2(5):e000321.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Al Mheid I, Quyyumi AA. Sex differences in mental stress-induced myocardial ischemia: are women from venus? J Am Coll Cardiol. 2014;64(16):1679–80.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Cardillo C, Kilcoyne CM, Quyyumi AA, Cannon RO 3rd, Panza JA. Role of nitric oxide in the vasodilator response to mental stress in normal subjects. Am J Cardiol. 1997;80(8):1070–4.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Dakak N, Quyyumi AA, Eisenhofer G, Goldstein DS, Cannon RO 3rd. Sympathetically mediated effects of mental stress on the cardiac microcirculation of patients with coronary artery disease. Am J Cardiol. 1995;76(3):125–30.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Rutledge T, Vaccarino V, Johnson BD, et al. Depression and cardiovascular health care costs among women with suspected myocardial ischemia: prospective results from the WISE (Women’s Ischemia Syndrome Evaluation) Study. J Am Coll Cardiol. 2009;53(2):176–83.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Vaccarino V, Johnson BD, Sheps DS, et al. Depression, inflammation, and incident cardiovascular disease in women with suspected coronary ischemia: the National Heart, Lung, and Blood Institute-sponsored WISE study. J Am Coll Cardiol. 2007;50(21):2044–50.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Rutledge T, Kenkre TS, Bittner V, et al. Anxiety associations with cardiac symptoms, angiographic disease severity, and healthcare utilization: the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation. Int J Cardiol. 2013;168(3):2335–40.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Rutledge T, Linke SE, Krantz DS, et al. Comorbid depression and anxiety symptoms as predictors of cardiovascular events: results from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study. Psychosom Med. 2009;71(9):958–64.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 1974;33(1):87–94.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Di Carli MF, Tobes MC, Mangner T, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med. 1997;336(17):1208–15.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gulli G, Cemin R, Pancera P, Menegatti G, Vassanelli C, Cevese A. Evidence of parasympathetic impairment in some patients with cardiac syndrome X. Cardiovasc Res. 2001;52(2):208–16.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Camici PG, Marraccini P, Gistri R, Salvadori PA, Sorace O, L’Abbate A. Adrenergically mediated coronary vasoconstriction in patients with syndrome X. Cardiovasc Drugs Ther. 1994;8(2):221–6.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Cemin R, Erlicher A, Fattor B, Pitscheider W, Cevese A. Reduced coronary flow reserve and parasympathetic dysfunction in patients with cardiovascular syndrome X. Coron Artery Dis. 2008;19(1):1–7.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lanza GA, Giordano A, Pristipino C, et al. Abnormal cardiac adrenergic nerve function in patients with syndrome X detected by [123I]metaiodobenzylguanidine myocardial scintigraphy. Circulation. 1997;96(3):821–6.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Di Monaco A, Bruno I, Sestito A, et al. Cardiac adrenergic nerve function and microvascular dysfunction in patients with cardiac syndrome X. Heart. 2009;95(7):550–4.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Bakir M, Nelson MD, Jones E, et al. Heart failure hospitalization in women with signs and symptoms of ischemia: a report from the women’s ischemia syndrome evaluation study. Int J Cardiol. 2016;223:936–9.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    AlBadri A, Lai K, Wei J, et al. Inflammatory biomarkers as predictors of heart failure in women without obstructive coronary artery disease: a report from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE). PLoS One. 2017;12(5):e0177684.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Arrebola-Moreno AL, Arrebola JP, Moral-Ruiz A, Ramirez-Hernandez JA, Melgares-Moreno R, Kaski JC. Coronary microvascular spasm triggers transient ischemic left ventricular diastolic abnormalities in patients with chest pain and angiographically normal coronary arteries. Atherosclerosis. 2014;236(1):207–14.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ong P, Athanasiadis A, Mahrholdt H, Borgulya G, Sechtem U, Kaski JC. Increased coronary vasoconstrictor response to acetylcholine in women with chest pain and normal coronary arteriograms (cardiac syndrome X). Clin Res Cardiol. 2012;101(8):673–81.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hung MJ, Hu P, Hung MY. Coronary artery spasm: review and update. Int J Med Sci. 2014;11(11):1161–71.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Shimokawa H. 2014 Williams Harvey Lecture: importance of coronary vasomotion abnormalities-from bench to bedside. Eur Heart J. 2014;35(45):3180–93.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Tweet MS, Gulati R, Hayes SN. What clinicians should know alphabout spontaneous coronary artery dissection. Mayo Clin Proc. 2015;90(8):1125–30.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kanwar SS, Hayes SN, Olson TM, Gulati RA. breakthrough in spontaneous coronary artery dissection pathogenesis: is it an inherited condition? Expert Rev Cardiovasc Ther. 2017;15(1):1–2.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kwon TG, Gulati R, Matsuzawa Y, et al. Proliferation of coronary adventitial vasa vasorum in patients with spontaneous coronary artery dissection. JACC Cardiovasc Imaging. 2016;9(7):891–2.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Saw J, Ricci D, Starovoytov A, Fox R, Buller CE. Spontaneous coronary artery dissection: prevalence of predisposing conditions including fibromuscular dysplasia in a tertiary center cohort. JACC Cardiovasc Interv. 2013;6(1):44–52.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kurisu S, Kihara Y. Tako-tsubo cardiomyopathy: clinical presentation and underlying mechanism. J Cardiol. 2012;60(6):429–37.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Pelliccia F, Kaski JC, Crea F, Camici PG. Pathophysiology of takotsubo syndrome. Circulation. 2017;135(24):2426–41.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary microcirculation in patients with takotsubo-like left ventricular dysfunction. Circ J. 2005;69(8):934–9.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Bybee KA, Prasad A, Barsness GW, et al. Clinical characteristics and thrombolysis in myocardial infarction frame counts in women with transient left ventricular apical ballooning syndrome. Am J Cardiol. 2004;94(3):343–6.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Vaccaro A, Despas F, Delmas C, et al. Direct evidences for sympathetic hyperactivity and baroreflex impairment in Tako Tsubo cardiopathy. PLoS One. 2014;9(3):e93278.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Fihn SD, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2012;126:2354–471.CrossRefGoogle Scholar
  70. 70.
    Johnson BDK, Kelsey SF, Bairey Merz CN. Clinical risk assessment in women: chest discomfort: report from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study. In: Shaw LJ, Redberg RF, editors. Coronary disease in women: evidence-based diagnosis and treatment. Totowa, NJ: Humana Press; 2003. p. 129–42.Google Scholar
  71. 71.
    Milner KA, Funk M, Richards S, Wilmes RM, Vaccarino V, Krumholz HM. Gender differences in symptom presentation associated with coronary heart disease. Am J Cardiol. 1999;84(4):396–9.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    AlBadri A, Leong D, Bairey Merz CN, et al. Typical angina is associated with greater coronary endothelial dysfunction but not abnormal vasodilatory reserve. Clin Cardiol. 2017.
  73. 73.
    Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA. 2007;297(6):611–9.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Goff DC Jr, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. Circulation. 2013;129(25 Suppl 2):S49–73.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Stone NJ, Robinson J, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):3024–5.Google Scholar
  76. 76.
    Khaliq A, Johnson BD, Anderson RD, et al. Relationships between components of metabolic syndrome and coronary intravascular ultrasound atherosclerosis measures in women without obstructive coronary artery disease: the NHLBI-Sponsored Women’s Ischemia Syndrome Evaluation Study. Cardiovasc Endocrinol. 2015;4(2):45–52.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Enkhmaa D, Wall D, Mehta PK, et al. Preeclampsia and vascular function: a window to future cardiovascular disease risk. J Womens Health (Larchmt). 2016;25(3):284–91.CrossRefGoogle Scholar
  78. 78.
    Bellamy L, Casas JP, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007;335(7627):974.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Mosca L, Benjamin EJ, Berra K, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update. Circulation. 2011;123(11):1243–62.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Garcia M, Mulvagh SL, Merz CNB, Buring JE, Manson JE. Cardiovascular disease in women. Circ Res. 2016;118(8):1273–93.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kobayashi H, Giles JT, Arinuma Y, Yokoe I, Hirano M, Kobayashi Y. Cardiac magnetic resonance imaging abnormalities in patients with systemic lupus erythematosus: a preliminary report. Mod Rheumatol. 2010;20(3):319–23.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ishimori ML, Martin R, Berman DS, et al. Myocardial ischemia in the absence of obstructive coronary artery disease in systemic lupus erythematosus. JACC Cardiovasc Imaging. 2011;4(1):27–33.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ishimori ML, Anderson L, Weisman MH, Mehta PK, Bairey Merz CN, Wallace DJ. Microvascular angina: an underappreciated cause of SLE chest pain. J Rheumatol. 2013;40(5):746–7.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Goykhman P, Mehta PK, Minissian M, Thomson LEJ, Berman DS, Ishimori ML, Wallace DJ, Weisman MH, Shufelt CL, Bairey Merz CN. Subendocardial ischemia and myocarditis in systemic lupus erythematosus detected by cardiac magnetic resonance imaging. J Rheumatol. 2012;39(2):448–50.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Roman MJ, Shanker BA, Davis A, Lockshin MD, Sammaritano L, Simantov R, Crow MK, Schwartz JE, Paget SA, Devereux RB, Salmon JE. Prevalence and correlates of accelerated atherosclerosis in systemic lupus erythematosus. N Engl J Med. 2003;349:2399–406.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Avina-Zubieta JA, Choi HK, Sadatsafavi M, Etminan M, Esdaile JM, Lacaille D. Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies. Arthritis Rheum. 2008;59(12):1690–7.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Lichtman JH, Froelicher ES, Blumenthal JA, et al. Depression as a risk factor for poor prognosis among patients with acute coronary syndrome: systematic review and recommendations: a scientific statement from the American Heart Association. Circulation. 2014;129(12):1350–69.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Yusuf S, Hawken S, Ôunpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52.PubMedCrossRefGoogle Scholar
  89. 89.
    Shah AJ, Ghasemzadeh N, Zaragoza-Macias E, et al. Sex and age differences in the association of depression with obstructive coronary artery disease and adverse cardiovascular events. J Am Heart Assoc. 2014;3(3):e000741.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Mieres JH, Gulati M, Bairey Merz N, et al. Role of noninvasive testing in the clinical evaluation of women with suspected ischemic heart disease: a consensus statement from the American Heart Association. Circulation. 2014;130(4):350–79.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Shaw LJ, Bairey Merz CN, Pepine CJ, et al. Insights from the NHLBI-Sponsored Women’s Ischemia Syndrome Evaluation (WISE) Study: part I: gender differences in traditional and novel risk factors, symptom evaluation, and gender-optimized diagnostic strategies. J Am Coll Cardiol. 2006;47(3 Suppl):S4–S20.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Gulati M, Black HR, Shaw LJ, et al. The prognostic value of a nomogram for exercise capacity in women. N Engl J Med. 2005;353(5):468–75.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Kohli P, Gulati M. Exercise stress testing in women: going back to the basics. Circulation. 2010;122(24):2570–80.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Vaccarino V, Shah AJ, Rooks C, et al. Sex differences in mental stress-induced myocardial ischemia in young survivors of an acute myocardial infarction. Psychosom Med. 2014;76(3):171–80.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Vaccarino V, Wilmot K, Al Mheid I, et al. Sex differences in mental stress-induced myocardial ischemia in patients with coronary heart disease. J Am Heart Assoc. 2016;5(9):pii: e003630.CrossRefGoogle Scholar
  96. 96.
    Cortigiani L, Rigo F, Gherardi S, et al. Prognostic effect of coronary flow reserve in women versus men with chest pain syndrome and normal dipyridamole stress echocardiography. Am J Cardiol. 2010;106(12):1703–8.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Ahmari SA, Bunch TJ, Modesto K, et al. Impact of individual and cumulative coronary risk factors on coronary flow reserve assessed by dobutamine stress echocardiography. Am J Cardiol. 2008;101(12):1694–9.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kaul S. Myocardial Contrast Echocardiography. Circulation. 2008;118(3):291–308.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Thomas JD. Myocardial contrast echocardiography perfusion imaging. J Am Coll Cardiol. 2013;62(15):1362–4.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Vogel R, Indermuhle A, Reinhardt J, et al. The quantification of absolute myocardial perfusion in humans by contrast echocardiography: algorithm and validation. J Am Coll Cardiol. 2005;45(5):754–62.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Gould KL, Johnson NP, Bateman TM, et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol. 2013;62(18):1639–53.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Rimoldi OE, Camici PG. Positron emission tomography for quantitation of myocardial perfusion. J Nucl Cardiol. 2004;11(4):482–90.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Camici PG. Positron emission tomography and myocardial imaging. Heart. 2000;83(4):475–80.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Camici P, Ferrannini E, Opie LH. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis. 1989;32(3):217–38.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Cho SG, Park KS, Kim J, et al. Coronary flow reserve and relative flow reserve measured by N-13 ammonia PET for characterization of coronary artery disease. Ann Nucl Med. 2017;31(2):144–52.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Garcia EV. Are absolute myocardial blood flow PET measurements ready for clinical use? J Nucl Cardiol. 2014;21(5):857–8.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Branscomb E, Heller G, Bateman T, et al. Advances in cardiac imaging: taking a closer look at PET perfusion imaging : American Society of Nuclear Cardiology, Philadelphia, PA, 24 September 2010. J Nucl Cardiol. 2012;19(Suppl 1):S46–7.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Nakazato R, Heo R, Leipsic J, Min JK. CFR and FFR assessment with PET and CTA: strengths and limitations. Curr Cardiol Rep. 2014;16(5):484.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Chow BJ, Dorbala S, Di Carli MF, et al. Prognostic value of PET myocardial perfusion imaging in obese patients. JACC Cardiovasc Imaging. 2014;7(3):278–87.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Camici PG, Rimoldi OE. The clinical value of myocardial blood flow measurement. J Nucl Med. 2009;50(7):1076–87.PubMedCrossRefGoogle Scholar
  111. 111.
    Geltman EM, Henes CG, Senneff MJ, Sobel BE, Bergmann SR. Increased myocardial perfusion at rest and diminished perfusion reserve in patients with angina and angiographically normal coronary arteries. J Am Coll Cardiol. 1990;16(3):586–95.PubMedCrossRefGoogle Scholar
  112. 112.
    Czernin J, Muller P, Chan S, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation. 1993;88(1):62–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Murthy VL, Naya M, Foster CR, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124(20):2215–24.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Naya M, Murthy VL, Taqueti VR, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med. 2014;55(2):248–55.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Pepine CJ, Anderson RD, Sharaf BL, et al. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women’s Ischemia Syndrome Evaluation) study. J Am Coll Cardiol. 2010;55(25):2825–32.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Sicari R, Rigo F, Cortigiani L, Gherardi S, Galderisi M, Picano E. Additive prognostic value of coronary flow reserve in patients with chest pain syndrome and normal or near-normal coronary arteries. Am J Cardiol. 2009;103(5):626–31.PubMedCrossRefGoogle Scholar
  117. 117.
    Taqueti VR, Hachamovitch R, Murthy VL, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation. 2015;131(1):19–27.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Greenwood JP, Maredia N, Younger JF, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet (London, England). 2012;379(9814):453–60.CrossRefGoogle Scholar
  119. 119.
    Panting JR, Gatehouse PD, Yang GZ, et al. Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med. 2002;346:1948–53.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Pilz G, Klos M, Ali E, Hoefling B, Scheck R, Bernhardt P. Angiographic correlations of patients with small vessel disease diagnosed by adenosine-stress cardiac magnetic resonance imaging. J Cardiovasc Magn Reson. 2008;10:8.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Thomson LE, Wei J, Agarwal M, et al. Cardiac magnetic resonance myocardial perfusion reserve index is reduced in women with coronary microvascular dysfunction. A National Heart, Lung, and Blood Institute-sponsored study from the Women’s Ischemia Syndrome Evaluation. Circ Cardiovasc Imaging. 2015;8(4):pii: e002481.CrossRefGoogle Scholar
  122. 122.
    Tanriverdi H, Evrengul H, Kuru O, et al. Cigarette smoking induced oxidative stress may impair endothelial function and coronary blood flow in angiographically normal coronary arteries. Circ J. 2006;70(5):593–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Vichova T, Motovska Z. Oxidative stress: predictive marker for coronary artery disease. Exp Clin Cardiol. 2013;18(2):e88–91.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Reho JJ, Rahmouni K. Oxidative and inflammatory signals in obesity-associated vascular abnormalities. Clin Sci (Lond). 2017;131(14):1689–700.CrossRefGoogle Scholar
  125. 125.
    Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ J. 2009;73:411–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Molyneux CA, Glyn MC, Ward BJ. Oxidative stress and cardiac microvascular structure in ischemia and reperfusion: the protective effect of antioxidant vitamins. Microvasc Res. 2002;64(2):265–77.PubMedCrossRefGoogle Scholar
  127. 127.
    Bohlen HG, Zhou X, Unthank JL, Miller SJ, Bills R. Transfer of nitric oxide by blood from upstream to downstream resistance vessels causes microvascular dilation. Am J Physiol Heart Circ Physiol. 2009;297(4):H1337–46.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Mkhwanazi BN, Serumula MR, Myburg RB, Van Heerden FR, Musabayane CT. Antioxidant effects of maslinic acid in livers, hearts and kidneys of streptozotocin-induced diabetic rats: effects on kidney function. Oxidative Med Cell Longev. 2014;36(3):419–31.Google Scholar
  129. 129.
    Dhawan SS, Eshtehardi P, McDaniel MC, et al. The role of plasma aminothiols in the prediction of coronary microvascular dysfunction and plaque vulnerability. Atherosclerosis. 2011;219(1):266–72.PubMedCrossRefGoogle Scholar
  130. 130.
    Ignarro LJ, Napoli C. Novel features on nitric oxide, endothelial nitric oxide synthase and atherosclerosis. Curr Atheroscler Rep. 2004;6:278–87.CrossRefGoogle Scholar
  131. 131.
    Lekakis J, Abraham P, Balbarini A, et al. Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on Peripheral Circulation. Eur J Cardiovasc Prev Rehabil. 2011;18(6):775–89.PubMedCrossRefGoogle Scholar
  132. 132.
    Wang H, Liu J. Plasma asymmetric dimethylarginine and L-arginine levels in Chinese patients with essential hypertension without coronary artery disease. J Cardiovasc Dis Res. 2011;2(3):177–80.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Sitia S, Tomasoni L, Atzeni F, et al. From endothelial dysfunction to atherosclerosis. Autoimmun Rev. 2010;9(12):830–4.PubMedCrossRefGoogle Scholar
  134. 134.
    Sen N, Poyraz F, Tavil Y, et al. Carotid intima-media thickness in patients with cardiac syndrome X and its association with high circulating levels of asymmetric dimethylarginine. Atherosclerosis. 2009;204(2):e82–5.PubMedCrossRefGoogle Scholar
  135. 135.
    Ridker P, Cook N. Clinical usefulness of very high and very low levels of C-reactive protein across the full range of Framingham Risk Scores. Circulation. 2004;109(16):1955–9.PubMedCrossRefGoogle Scholar
  136. 136.
    Tsimikas S, Willerson JT, Ridker PM. C-reactive protein and other emerging blood biomarkers to optimize risk stratification of vulnerable patients. J Am Coll Cardiol. 2006;47(Suppl. 8):C19–31.PubMedCrossRefGoogle Scholar
  137. 137.
    Johnson BD, Kip KE, Marroquin OC, et al. Serum amyloid A as a predictor of coronary artery disease and cardiovascular outcome in women: the National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation. 2004;109(6):726–32.PubMedCrossRefGoogle Scholar
  138. 138.
    Mekonnen G, Hayek SS, Mehta PK, et al. Circulating progenitor cells and coronary microvascular dysfunction: results from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation—Coronary Vascular Dysfunction Study (WISE-CVD). Atherosclerosis. 2016;253:111–7.PubMedCrossRefGoogle Scholar
  139. 139.
    Flavahan NA. Atherosclerosis or lipoprotein-induced endothelial dysfunction: potential mechanism underlying reduction in ADRF/nitric oxide activity. Circulation. 1992;85:1927–38.PubMedCrossRefGoogle Scholar
  140. 140.
    Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic arteries. N Engl J Med. 1986;315:1046–51.PubMedCrossRefGoogle Scholar
  141. 141.
    Kern MJ, Lerman A, Bech JW, et al. Physiological assessment of coronary artery disease in the cardiac catheterization laboratory: a scientific statement from the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology. Circulation. 2006;114(12):1321–41.PubMedCrossRefGoogle Scholar
  142. 142.
    Chareonthaitawee P, Kaufmann PA, Rimoldi O, Camici PG. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res. 2001;50(1):151–61.PubMedCrossRefGoogle Scholar
  143. 143.
    Lee JM, Jung JH, Hwang D, et al. Coronary Flow Reserve and Microcirculatory Resistance in Patients With Intermediate Coronary Stenosis. J Am Coll Cardiol. 2016;67(10):1158–69.PubMedCrossRefGoogle Scholar
  144. 144.
    Murakami T, Mizuno S, Kaku B. Clinical morbidities in subjects with Doppler-evaluated endothelial dysfunction of coronary artery. J Am Coll Cardiol. 1998;31(s1):419A.CrossRefGoogle Scholar
  145. 145.
    Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR Jr, Lerman A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation. 2000;101:948–54.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    von Mering GO, Arant CB, SP MG, Miller DM, CNB M, Kelsey SF, Reichek N, Reis SE, Rogers WJ, Sharaf BL, Sopko G, Kerensky RA. Abnormal coronary vasomotion in response to acetylcholine predicts increased cardiac events in women: data from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study. J Am Coll Cardiol. 2001;37:243A.CrossRefGoogle Scholar
  147. 147.
    Ong P, Athanasiadis A, Borgulya G, Voehringer M, Sechtem U. 3-year follow-up of patients with coronary artery spasm as cause of acute coronary syndrome: the CASPAR (coronary artery spasm in patients with acute coronary syndrome) study follow-up. J Am Coll Cardiol. 2011;57:147–52.PubMedCrossRefGoogle Scholar
  148. 148.
    Wei J, Mehta PK, Johnson BD, et al. Safety of coronary reactivity testing in women with no obstructive coronary artery disease: results from the NHLBI-sponsored WISE (Women’s Ischemia Syndrome Evaluation) study. JACC Cardiovasc Interv. 2012;5(6):646–53.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Haskell WL, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Assoication. Med Sci Sports Exerc. 2007;39(8):1423–34.PubMedCrossRefGoogle Scholar
  150. 150.
    Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112(17):2735–52.PubMedCrossRefGoogle Scholar
  151. 151.
    Green DJ, Walsh JH, Maiorana A, Best MJ, Taylor RR, O’Driscoll JG. Exercise-induced improvement in endothelial dysfunction is not mediated by changes in CV risk factors: pooled analysis of diverse patient populations. Am J Physiol Heart Circ Physiol. 2003;285:H2679–87.PubMedCrossRefGoogle Scholar
  152. 152.
    Hambrecht R, Wolf A, Gielen S, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med. 2000;342:454–60.PubMedCrossRefGoogle Scholar
  153. 153.
    Messner B, Bernhard D. Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol. 2014;34(3):509–15.PubMedCrossRefGoogle Scholar
  154. 154.
    Morita H, Ikeda H, Haramaki N, Eguchi H, Imaizumi T. Only two-week smoking cessation improves platelet aggregability and intraplatelet redox imbalance of long-term smokers. J Am Coll Cardiol. 2005;45(4):589–94.PubMedCrossRefGoogle Scholar
  155. 155.
    Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(25 Suppl 2):S1–45.PubMedCrossRefGoogle Scholar
  156. 156.
    Fabian E, Varga A, Picano E, Vajo Z, Ronaszeki A, Csanady M. Effect of simvastatin on endothelial function in cardiac syndrome X patients. Am J Cardiol. 2004;94(5):652–5.PubMedCrossRefGoogle Scholar
  157. 157.
    Caliskan M, Erdogan D, Gullu H, et al. Effects of atorvastatin on coronary flow reserve in patients with slow coronary flow. Clin Cardiol. 2007;30(9):475–9.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    John S, Schlaich M, Langenfeld M, et al. Increased bioavailability of nitric oxide after lipid-lowering therapy in hypercholesterolemic patients: a randomized, placebo-controlled, double-blind study. Circulation. 1998;98:211–6.PubMedCrossRefGoogle Scholar
  159. 159.
    Masumoto A, Hirooka Y, Hironaga K, et al. Effect of pravastatin on endothelial function in patients with coronary artery disease (cholesterol-independent effect of pravastatin). Am J Cardiol. 2001;88(11):1291–4.PubMedCrossRefGoogle Scholar
  160. 160.
    Romano M, Mezzetti A, Marulli C, et al. Fluvastatin reduces soluble P-selectin and ICAM-1 levels in hypercholesterolemic patients: role of nitric oxide. J Invest Med. 2000;48(3):183–9.Google Scholar
  161. 161.
    Kayikcioglu M, Payzin S, Yavuzgil O, Kultursay H, Can LH, Soydan I. Benefits of statin treatment in cardiac syndrome-X. Eur Heart J. 2003;24(22):1999–2005.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Bugiardini R, Bairey Merz CN. Angina with “normal” coronary arteries: a changing philosophy. JAMA. 2005;293(4):477–84.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Fraker TD Jr, Fihn SD, Chronic Stable Angina Writing C, et al. 2007 chronic angina focused update of the ACC/AHA 2002 guidelines for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Writing Group to develop the focused update of the 2002 guidelines for the management of patients with chronic stable angina. J Am Coll Cardiol. 2007;50(23):2264–74.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Kalinowski L, Dobrucki LW, Szczepanska-Konkel M, et al. Third-generation beta-blockers stimulate nitric oxide release from endothelial cells through ATP efflux: a novel mechanism for antihypertensive action. Circulation. 2003;107(21):2747–52.PubMedCrossRefGoogle Scholar
  165. 165.
    Matsuda Y, Akita H, Terashima M, Shiga N, Kanazawa K, Yokoyama M. Carvedilol improves endothelium-dependent dilatation in patients with coronary artery disease. Am Heart J. 2000;140(5):753–9.PubMedCrossRefGoogle Scholar
  166. 166.
    Togni M, Vigorito F, Windecker S, et al. Does the beta-blocker nebivolol increase coronary flow reserve? Cardiovasc Drugs Ther. 2007;21(2):99–108.PubMedCrossRefGoogle Scholar
  167. 167.
    Hung OY, Molony D, Corban MT, et al. Comprehensive assessment of coronary plaque progression with advanced intravascular imaging, physiological measures, and wall shear stress: a pilot double-blinded randomized controlled clinical trial of nebivolol versus atenolol in nonobstructive coronary artery disease. J Am Heart Assoc. 2016;5(1):pii: e002764.CrossRefGoogle Scholar
  168. 168.
    Chen JW, Hsu NW, Wu TC, Lin SJ, Chang MS. Long-term angiotensin-converting enzyme inhibition reduces plasma asymmetric dimethylarginine and improves endothelial nitric oxide bioavailability and coronary microvascular function in patients with syndrome X. Am J Cardiol. 2002;90(9):974–82.PubMedCrossRefGoogle Scholar
  169. 169.
    Pauly DF, Johnson BD, Anderson RD, et al. In women with symptoms of cardiac ischemia, nonobstructive coronary arteries, and microvascular dysfunction, angiotensin-converting enzyme inhibition is associated with improved microvascular function: A double-blind randomized study from the National Heart, Lung and Blood Institute Women’s Ischemia Syndrome Evaluation (WISE). Am Heart J. 2011;162(4):678–84.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Pizzi C, Manfrini O, Fontana F, Bugiardini R. Angiotensin-converting enzyme inhibitors and 3-hydroxy-3-methylglutaryl coenzyme A reductase in cardiac Syndrome X: role of superoxide dismutase activity. Circulation. 2004;109(1):53–8.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Higuchi T, Abletshauser C, Nekolla SG, Schwaiger M, Bengel FM. Effect of the angiotensin receptor blocker Valsartan on coronary microvascular flow reserve in moderately hypertensive patients with stable coronary artery disease. Microcirculation. 2007;14(8):805–12.PubMedCrossRefGoogle Scholar
  172. 172.
    Naoumova RP, Kindler H, Leccisotti L, et al. Pioglitazone improves myocardial blood flow and glucose utilization in nondiabetic patients with combined hyperlipidemia: a randomized, double-blind, placebo-controlled study. J Am Coll Cardiol. 2007;50(21):2051–8.PubMedCrossRefGoogle Scholar
  173. 173.
    Cannon RO 3rd, Watson RM, Rosing DR, Epstein SE. Efficacy of calcium channel blocker therapy for angina pectoris resulting from small-vessel coronary artery disease and abnormal vasodilator reserve. Am J Cardiol. 1985;56(4):242–6.PubMedCrossRefGoogle Scholar
  174. 174.
    Ozcelik F, Altun A, Ozbay G. Antianginal and anti-ischemic effects of nisoldipine and ramipril in patients with syndrome X. Clin Cardiol. 1999;22(5):361–5.PubMedCrossRefGoogle Scholar
  175. 175.
    Bugiardini R, Borghi A, Biagetti L, Puddu P. Comparison of verapamil versus propranolol therapy in syndrome X. Am J Cardiol. 1989;63(5):286–90.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Lanza GA, Colonna G, Pasceri V, Maseri A. Atenolol versus amlodipine versus isosorbide-5-mononitrate on anginal symptoms in syndrome X. Am J Cardiol. 1999;84(7):854–6. A858PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Stone PH. Calcium antagonists for Prinzmetal’s variant angina, unstable angina and silent myocardial ischemia: therapeutic tool and probe for identification of pathophysiologic mechanisms. Am J Cardiol. 1987;59(3):101B–15B.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Parodi O, Simonetti I, Michelassi C, et al. Comparison of verapamil and propranolol therapy for angina pectoris at rest: a randomized, multiple-crossover, controlled trial in the coronary care unit. Am J Cardiol. 1986;57(11):899–906.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Pepine CJ, Feldman RL, Whittle J, Curry RC, Conti CR. Effect of diltiazem in patients with variant angina: a randomized double-blind trial. Am Heart J. 1981;101(6):719–25.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Yasue H, Omote S, Takizawa A, Nagao M, Miwa K, Tanaka S. Exertional angina pectoris caused by coronary arterial spasm: effects of various drugs. Am J Cardiol. 1979;43(3):647–52.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Lerman A, Burnett JC Jr, Higano ST, McKinley LJ, Holmes DR Jr. Long-term L-arginine supplementation improves small-vessel coronary endothelial function in humans. Circulation. 1998;97(21):2123–8.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Kaski JC, Rosano GM, Collins P, Nihoyannopoulos P, Maseri A, Poole-Wilson PA. Cardiac syndrome X: clinical characteristics and left ventricular function. Long-term follow-up study. J Am Coll Cardiol. 1995;25(4):807–14.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Chaitman BR. Ranolazine for the treatment of chronic angina and potential use in other cardiovascular conditions. Circulation. 2006;113(20):2462–72.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Mehta PK, Goykhman P, Thomson LE, et al. Ranolazine improves angina in women with evidence of myocardial ischemia but no obstructive coronary artery disease. J Am Coll Cardiol Img. 2011;4(5):514–22.CrossRefGoogle Scholar
  185. 185.
    Bairey Merz CN, Handberg EM, Shufelt CL, et al. A randomized, placebo-controlled trial of late Na current inhibition (ranolazine) in coronary microvascular dysfunction (CMD): impact on angina and myocardial perfusion reserve. Eur Heart J. 2016;37(19):1504–13.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Roqué M, Heras M, Roig E, et al. Short-term effects of transdermal estrogen replacement therapy on coronary vascular reactivity in postmenopausal women with angina pectoris and normal results on coronary angiograms. J Am Coll Cardiol. 1998;31(1):139–43.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Hulley S, Grady D, Bush T, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA. 1998;280(7):605–12.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Investigators WHI. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative Randomized Controlled Trial. JAMA. 2002;288:321–33.CrossRefGoogle Scholar
  189. 189.
    Anderson GL, Limacher M, Assaf AR, et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. JAMA. 2004;291(14):1701–12.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Wolff EF, He Y, Black DM, et al. Self-reported menopausal symptoms, coronary artery calcification, and carotid intima-media thickness in recently menopausal women screened for the Kronos early estrogen prevention study (KEEPS). Fertil Steril. 2013;99(5):1385–91.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Sulfi S, Timmis AD. Ivabradine—the first selective sinus node I(f) channel inhibitor in the treatment of stable angina. Int J Clin Pract. 2006;60(2):222–8.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Fox K, Ford I, Steg PG, Tendera M, Ferrari R, Investigators B. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet (London, England). 2008;372(9641):807–16.CrossRefGoogle Scholar
  193. 193.
    Swedberg K, Komajda M, Bohm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet (London, England). 2010;376(9744):875–85.CrossRefGoogle Scholar
  194. 194.
    Tardif JC, Ford I, Tendera M, Bourassa MG, Fox K, Investigators I. Efficacy of ivabradine, a new selective I(f) inhibitor, compared with atenolol in patients with chronic stable angina. Eur Heart J. 2005;26(23):2529–36.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Skalidis EI, Hamilos MI, Chlouverakis G, Zacharis EA, Vardas PE. Ivabradine improves coronary flow reserve in patients with stable coronary artery disease. Atherosclerosis. 2011;215(1):160–5.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Villano A, Di Franco A, Nerla R, et al. Effects of ivabradine and ranolazine in patients with microvascular angina pectoris. Am J Cardiol. 2013;112(1):8–13.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Cannon RO 3rd, Quyyumi AA, Mincemoyer R, et al. Imipramine in patients with chest pain despite normal coronary angiograms. N Engl J Med. 1994;330(20):1411–7.PubMedCrossRefGoogle Scholar
  198. 198.
    Cox ID, Hann CM, Kaski JC. Low dose imipramine improves chest pain but not quality of life in patients with angina and normal coronary angiograms. Eur Heart J. 1998;19(2):250–4.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Hongo M, Takenaka H, Uchikawa S, Nakatsuka T, Watanabe N, Sekiguchi M. Coronary microvascular response to intracoronary administration of nicorandil. Am J Cardiol. 1995;75(4):246–50.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Chen JW, Lee WL, Hsu NW, et al. Effects of short-term treatment of nicorandil on exercise-induced myocardial ischemia and abnormal cardiac autonomic activity in microvascular angina. Am J Cardiol. 1997;80(1):32–8.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Vicari RM, Chaitman B, Keefe D, et al. Efficacy and safety of fasudil in patients with stable angina: a double-blind, placebo-controlled, phase 2 trial. J Am Coll Cardiol. 2005;46(10):1803–11.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Fukumoto Y, Mohri M, Inokuchi K, et al. Anti-ischemic effects of fasudil, a specific Rho-kinase inhibitor, in patients with stable effort angina. J Cardiovasc Pharmacol. 2007;49(3):117–21.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Shimokawa H, Hiramori K, Iinuma H, et al. Anti-anginal effect of fasudil, a Rho-kinase inhibitor, in patients with stable effort angina: a multicenter study. J Cardiovasc Pharmacol. 2002;40(5):751–61.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Shimokawa H, Satoh K. 2015 ATVB Plenary Lecture: translational research on rho-kinase in cardiovascular medicine. Arterioscler Thromb Vasc Biol. 2015;35(8):1756–69.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Kantor PF, Lucien A, Kozak R, Lopaschuk GD. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res. 2000;86(5):580–8.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Rogacka D, Guzik P, Wykretowicz A, Rzezniczak J, Dziarmaga M, Wysocki H. Effects of trimetazidine on clinical symptoms and tolerance of exercise of patients with syndrome X: a preliminary study. Coron Artery Dis. 2000;11(2):171–7.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Nalbantgil S, Altinti&gbreve A, Yilmaz H, Nalbantgil II, Onder R. The effect of trimetazidine in the treatment of microvascular angina. Int J Angiol. 1999;8(1):40–3.Google Scholar
  208. 208.
    Leonardo F, Fragasso G, Rossetti E, et al. Comparison of trimetazidine with atenolol in patients with syndrome X: effects on diastolic function and exercise tolerance. Cardiologia. 1999;44(12):1065–9.PubMedPubMedCentralGoogle Scholar
  209. 209.
    Peng S, Zhao M, Wan J, Fang Q, Fang D, Li K. The efficacy of trimetazidine on stable angina pectoris: a meta-analysis of randomized clinical trials. Int J Cardiol. 2014;177(3):780–5.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Ciapponi A, Pizarro R, Harrison J. Trimetazidine for stable angina. Cochrane Database Syst Rev. 2005;(4):Cd003614.Google Scholar
  211. 211.
    Stys TP, Lawson WE, Hui JC, et al. Effects of enhanced external counterpulsation on stress radionuclide coronary perfusion and exercise capacity in chronic stable angina pectoris. Am J Cardiol. 2002;89(7):822–4.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Arora RR, Chou TM, Jain D, et al. The multicenter study of enhanced external counterpulsation (MUST-EECP): effect of EECP on exercise-induced myocardial ischemia and anginal episodes. J Am Coll Cardiol. 1999;33(7):1833–40.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Urano H, Ikeda H, Ueno T, Matsumoto T, Murohara T, Imaizumi T. Enhanced external counterpulsation improves exercise tolerance, reduces exercise-induced myocardial ischemia and improves left ventricular diastolic filling in patients with coronary artery disease. J Am Coll Cardiol. 2001;37(1):93–9.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Lawson WE, Hui JC, Zheng ZS, et al. Three-year sustained benefit from enhanced external counterpulsation in chronic angina pectoris. Am J Cardiol. 1995;75(12):840–1.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Beck DT, Martin JS, Casey DP, Avery JC, Sardina PD, Braith RW. Enhanced external counterpulsation improves endothelial function and exercise capacity in patients with ischaemic left ventricular dysfunction. Clin Exp Pharmacol Physiol. 2014;41(9):628–36.PubMedPubMedCentralGoogle Scholar
  216. 216.
    Loh PH, Cleland JG, Louis AA, et al. Enhanced external counterpulsation in the treatment of chronic refractory angina: a long-term follow-up outcome from the International Enhanced External Counterpulsation Patient Registry. Clin Cardiol. 2008;31(4):159–64.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Lawson WE, Barsness G, Michaels AD, et al. Effectiveness of repeat enhanced external counterpulsation for refractory angina in patients failing to complete an initial course of therapy. Cardiology. 2007;108(3):170–5.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Kang H-J, Kim H-S, Zhang S-Y, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet. 2004;363(9411):751–6.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Antonios TF, Singer DR, Markandu ND, Mortimer PS, MacGregor GA. Structural skin capillary rarefaction in essential hypertension. Hypertension. 1999;33(4):998–1001.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Pries AR, Badimon L, Bugiardini R, et al. Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J. 2015;36(45):3134–46.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Kanazawa H, Tseliou E, Malliaras K, et al. Cellular postconditioning: allogeneic cardiosphere-derived cells reduce infarct size and attenuate microvascular obstruction when administered after reperfusion in pigs with acute myocardial infarction. Circ Heart Fail. 2015;8(2):322–32.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Asbury EA, Kanji N, Ernst E, Barbir M, Collins P. Autogenic training to manage symptomology in women with chest pain and normal coronary arteries. Menopause. 2009;16(1):60–5.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Asbury EA, Webb CM, Collins P. Group support to improve psychosocial well-being and primary-care demands among women with cardiac syndrome X. Climacteric. 2011;14(1):100–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Suegene K. Lee
    • 1
  • Jay Khambhati
    • 1
  • Puja K. Mehta
    • 2
    • 3
    • 4
    Email author
  1. 1.J. Willis Hurst Internal Medicine Residency ProgramEmory University School of MedicineAtlantaUSA
  2. 2.Emory Women’s Heart CenterEmory UniversityAtlantaUSA
  3. 3.Emory Clinical Cardiovascular Research InstituteEmory University School of MedicineAtlantaUSA
  4. 4.Division of CardiologyEmory University School of MedicineAtlantaUSA

Personalised recommendations