Skip to main content

Gender Differences in the Gut Microbiome and How These Affect Cardiovascular Diseases

Abstract

The literature was reviewed to search for consistently reported differences in the gut microbiome between females and males, in an attempt to relate such changes to different risks of cardiovascular disease that exist between the genders. Although multiple publications were identified that reported gender differences in the gut microbiome, none of the described observations were consistent. Apparently, the variation in gut microbiome between populations under study, as a result of differences in geography, life style, diet, age, genetics and possible other factors is more extensive than the variation between males and females. However, we summarize a number of findings on gender differences reported for cardiovascular diseases that may have a link to the microbiome, for instance the presence of irritable bowel disease which is a risk factor for cardiovascular disease, coincides with a dysbiosis of the gut microbiome, and is more common in females than males. Other microbiome-related gender differences may pose a greater risk for males, so that, overall, there is no known positive or negative generally applicable effect of a ‘female-type’ or ‘male-type’ microbiome that would have a significant effect on risk or severity of cardiovascular diseases.

Keywords

  • Gut microbiome
  • 16S rRNA
  • Gender differences
  • Irritable bowel disease

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-71135-5_7
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-71135-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)
Hardcover Book
USD   149.00
Price excludes VAT (USA)

References

  1. Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology. 2014;146(6):1449–58. https://doi.org/10.1053/j.gastro.2014.01.052.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science (New York, NY). 2005;308(5728):1635–8. https://doi.org/10.1126/science.1110591.

    CrossRef  Google Scholar 

  3. Quigley EMM. Gut bacteria in health and disease. Gastroenterol Hepatol. 2013;9(9):560–9.

    Google Scholar 

  4. Dominianni C, Sinha R, Goedert JJ, Pei Z, Yang L, Hayes RB, Ahn J. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS One. 2015;10(4):e0124599. https://doi.org/10.1371/journal.pone.0124599.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  5. Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, Zhang Y, Shen J, Pang X, Zhang M, Wei H, Chen Y, Lu H, Zuo J, Su M, Qiu Y, Jia W, Xiao C, Smith LM, Yang S, Holmes E, Tang H, Zhao G, Nicholson JK, Li L, Zhao L. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A. 2008;105(6):2117–22. https://doi.org/10.1073/pnas.0712038105.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, Cresci A, Silvi S, Orpianesi C, Verdenelli MC, Clavel T, Koebnick C, Zunft H-JF, Doré J, Blaut M. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol. 2006;72(2):1027–33. https://doi.org/10.1128/AEM.72.2.1027-1033.2006.

  7. Haro C, Rangel-Zúñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez P, Delgado-Lista J, Quintana-Navarro GM, Landa BB, Navas-Cortés JA, Tena-Sempere M, Clemente JC, López-Miranda J, Pérez-Jiménez F, Camargo A. Intestinal microbiota is influenced by gender and body mass index. PLoS One. 2016;11(5):e0154090. https://doi.org/10.1371/journal.pone.0154090.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  8. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, Turroni S, Biagi E, Peano C, Severgnini M, Fiori J, Gotti R, De Bellis G, Luiselli D, Brigidi P, Mabulla A, Marlowe F, Henry AG, Crittenden AN. Gut microbiome of the Hadza hunter-gatherers. Nat Commun. 2014;5:3654. https://doi.org/10.1038/ncomms4654.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  9. Triantafyllou K, Chang C, Pimentel M. Methanogens, methane and gastrointestinal motility. J Neurogastroenterol Motil. 2014;20(1):31–40. https://doi.org/10.5056/jnm.2014.20.1.31.

    CrossRef  PubMed  Google Scholar 

  10. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto J-M, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J, Meta HITC, Weissenbach J, Ehrlich SD, Bork P. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80. https://doi.org/10.1038/nature09944.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  11. Liang C, Tseng H-C, Chen H-M, Wang W-C, Chiu C-M, Chang J-Y, K-Y L, Weng S-L, Chang T-H, Chang C-H, Weng C-T, Wang H-M, Huang H-D. Diversity and enterotype in gut bacterial community of adults in Taiwan. BMC Genomics. 2017;18(Suppl 1):932. https://doi.org/10.1186/s12864-016-3261-6.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body. Nature. 2014;509(7500):357–60. https://doi.org/10.1038/nature13178.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  13. Aagaard K, Petrosino J, Keitel W, Watson M, Katancik J, Garcia N, Patel S, Cutting M, Madden T, Hamilton H, Harris E, Gevers D, Simone G, McInnes P, Versalovic J. The Human Microbiome Project strategy for comprehensive sampling of the human microbiome and why it matters. FASEB J. 2013;27(3):1012–22. https://doi.org/10.1096/fj.12-220806.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kovacs A, Ben-Jacob N, Tayem H, Halperin E, Iraqi FA, Gophna U. Genotype is a stronger determinant than sex of the mouse gut microbiota. Microb Ecol. 2011;61(2):423–8. https://doi.org/10.1007/s00248-010-9787-2.

    CrossRef  PubMed  Google Scholar 

  15. Voreades N, Kozil A, Weir TL. Diet and the development of the human intestinal microbiome. Front Microbiol. 2014;5:494. https://doi.org/10.3389/fmicb.2014.00494.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Suzuki Y, Ikeda K, Sakuma K, Kawai S, Sawaki K, Asahara T, Takahashi T, Tsuji H, Nomoto K, Nagpal R, Wang C, Nagata S, Yamashiro Y. Association between yogurt consumption and intestinal microbiota in healthy young adults differs by host gender. Front Microbiol. 2017;8:847. https://doi.org/10.3389/fmicb.2017.00847.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  17. The Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14. https://doi.org/10.1038/nature11234.

    CrossRef  CAS  Google Scholar 

  18. Escobar JS, Klotz B, Valdes BE, Agudelo GM. The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol. 2014;14(1):311. https://doi.org/10.1186/s12866-014-0311-6.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP, Taylor TD, Noguchi H, Mori H, Ogura Y, Ehrlich DS, Itoh K, Takagi T, Sakaki Y, Hayashi T, Hattori M. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res. 2007;14(4):169–81. https://doi.org/10.1093/dnares/dsm018.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wallis A, Butt H, Ball M, Lewis DP, Bruck D. Support for the microgenderome: associations in a human clinical population. Sci Rep. 2016;6:19171. https://doi.org/10.1038/srep19171.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  21. de Moraes AC, Fernandes GR, da Silva IT, Almeida-Pititto B, Gomes EP, Pereira AD, Ferreira SR. Enterotype may drive the dietary-associated cardiometabolic risk factors. Front Cell Infect Microbiol. 2017;7:47. https://doi.org/10.3389/fcimb.2017.00047.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  22. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, Wu S, Liu W, Cui Q, Geng B, Zhang W, Weldon R, Auguste K, Yang L, Liu X, Chen L, Yang X, Zhu B, Cai J. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5:14. https://doi.org/10.1186/s40168-016-0222-x.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Singh RK, Chang H-W, Yan D, Lee KM, Ucmak D, Wong K, Abrouk M, Farahnik B, Nakamura M, Zhu TH, Bhutani T, Liao W. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15:73. https://doi.org/10.1186/s12967-017-1175-y.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  24. Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120(7):1183–96. https://doi.org/10.1161/circresaha.117.309715.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535(7610):56–64. https://doi.org/10.1038/nature18846.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  26. Khan MJ, Gerasimidis K, Edwards CA, Shaikh MG. Role of gut microbiota in the aetiology of obesity: proposed mechanisms and review of the literature. J Obes. 2016;2016:7353642. https://doi.org/10.1155/2016/7353642.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JAM, Brandsma E, Marczynska J, Imhann F, Weersma RK, Franke L, Poon TW, Xavier RJ, Gevers D, Hofker MH, Wijmenga C, Zhernakova A. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res. 2015;117(9):817–24. https://doi.org/10.1161/circresaha.115.306807.

  28. Most J, Goossens GH, Reijnders D, Canfora EE, Penders J, Blaak EE. Gut microbiota composition strongly correlates to peripheral insulin sensitivity in obese men but not in women. Benefic Microbes. 2017;8(4):557–62. https://doi.org/10.3920/bm2016.0189.

    CrossRef  CAS  Google Scholar 

  29. Pevsner-Fischer M, Blacher E, Tatirovsky E, Ben-Dov IZ, Elinav E. The gut microbiome and hypertension. Curr Opin Nephrol Hypertens. 2017;26(1):1–8. https://doi.org/10.1097/mnh.0000000000000293.

    CrossRef  PubMed  CAS  Google Scholar 

  30. Cui L, Zhao T, Hu H, Zhang W, Hua X. Association Study of Gut Flora in Coronary Heart Disease through High-Throughput Sequencing. Biomed Res Int. 2017;2017:3796359. https://doi.org/10.1155/2017/3796359.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  31. Emoto T, Yamashita T, Sasaki N, Hirota Y, Hayashi T, So A, Kasahara K, Yodoi K, Matsumoto T, Mizoguchi T, Ogawa W, Hirata K. Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J Atheroscler Thromb. 2016;23(8):908–21. https://doi.org/10.5551/jat.32672.

    CrossRef  PubMed  CAS  Google Scholar 

  32. Yamashita T, Emoto T, Sasaki N, Hirata K-i. Gut microbiota and coronary artery disease. Int Heart J. 2016;57(6):663–71. https://doi.org/10.1536/ihj.16-414.

    CrossRef  PubMed  CAS  Google Scholar 

  33. Kelly TN, Bazzano LA, Ajami NJ, He H, Zhao J, Petrosino JF, Correa A, He J. Gut microbiome associates with lifetime cardiovascular disease risk profile among bogalusa heart study participants. Circ Res. 2016;119(8):956.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ussher JR, Lopaschuk GD, Arduini A. Gut microbiota metabolism of L-carnitine and cardiovascular risk. Atherosclerosis. 2013;231(2):456–61. https://doi.org/10.1016/j.atherosclerosis.2013.10.013.

    CrossRef  PubMed  CAS  Google Scholar 

  35. Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT, Zhu JJ, You C, Chen Q, Zhou L, Pan SY, Zhou HW. Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc. 2015;4(11):pii: e002699. https://doi.org/10.1161/jaha.115.002699.

    CrossRef  Google Scholar 

  36. Griffin JL, Wang X, Stanley E. Does our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics. Circ Cardiovasc Genetics. 2015;8(1):187–91. https://doi.org/10.1161/circgenetics.114.000219.

    CrossRef  CAS  Google Scholar 

  37. Tang WH, Hazen SL. Microbiome, trimethylamine N-oxide, and cardiometabolic disease. Transl Res. 2017;179:108–15. https://doi.org/10.1016/j.trsl.2016.07.007.

    CrossRef  PubMed  CAS  Google Scholar 

  38. Kitai T, Kirsop J, Tang WH. Exploring the microbiome in heart failure. Curr Heart Fail Rep. 2016;13(2):103–9. https://doi.org/10.1007/s11897-016-0285-9.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  39. Tang WH, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest. 2014;124(10):4204–11. https://doi.org/10.1172/jci72331.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  40. Miller CA, Corbin KD, da Costa KA, Zhang S, Zhao X, Galanko JA, Blevins T, Bennett BJ, O’Connor A, Zeisel SH. Effect of egg ingestion on trimethylamine-N-oxide production in humans: a randomized, controlled, dose-response study. Am J Clin Nutr. 2014;100(3):778–86. https://doi.org/10.3945/ajcn.114.087692.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  41. Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J, Sutter JL, Caudill MA. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol Nutr Food Res. 2017;61(1). https://doi.org/10.1002/mnfr.201600324.

  42. Senthong V, Li XS, Hudec T, Coughlin J, Wu Y, Levison B, Wang Z, Hazen SL, Tang WH. Plasma trimethylamine N-oxide, a gut microbe-generated phosphatidylcholine metabolite, is associated with atherosclerotic burden. J Am Coll Cardiol. 2016a;67(22):2620–8. https://doi.org/10.1016/j.jacc.2016.03.546.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  43. Senthong V, Wang Z, Fan Y, Wu Y, Hazen SL, Tang WH. Trimethylamine N-oxide and mortality risk in patients with peripheral artery disease. J Am Heart Assoc. 2016;5(10):e004237. https://doi.org/10.1161/jaha.116.004237.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  44. Troseid M, Ueland T, Hov JR, Svardal A, Gregersen I, Dahl CP, Aakhus S, Gude E, Bjorndal B, Halvorsen B, Karlsen TH, Aukrust P, Gullestad L, Berge RK, Yndestad A. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med. 2015;277(6):717–26. https://doi.org/10.1111/joim.12328.

    CrossRef  PubMed  CAS  Google Scholar 

  45. Tang WH, Wang Z, Fan Y, Levison B, Hazen JE, Donahue LM, Wu Y, Hazen SL. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol. 2014;64(18):1908–14. https://doi.org/10.1016/j.jacc.2014.02.617.

    CrossRef  PubMed  CAS  Google Scholar 

  46. Wang Z, Tang WH, Buffa JA, Fu X, Britt EB, Koeth RA, Levison BS, Fan Y, Wu Y, Hazen SL. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J. 2014;35(14):904–10. https://doi.org/10.1093/eurheartj/ehu002.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  47. Mafune A, Iwamoto T, Tsutsumi Y, Nakashima A, Yamamoto I, Yokoyama K, Yokoo T, Urashima M. Associations among serum trimethylamine-N-oxide (TMAO) levels, kidney function and infarcted coronary artery number in patients undergoing cardiovascular surgery: a cross-sectional study. Clin Exp Nephrol. 2016;20(5):731–9. https://doi.org/10.1007/s10157-015-1207-y.

    CrossRef  PubMed  CAS  Google Scholar 

  48. Senthong V, Wang Z, Li XS, Fan Y, Wu Y, Tang WH, Hazen SL. Intestinal microbiota-generated metabolite trimethylamine-N-oxide and 5-year mortality risk in stable coronary artery disease: the contributory role of intestinal microbiota in a COURAGE-like patient cohort. J Am Heart Assoc. 2016;5(6):pii: e002816. https://doi.org/10.1161/jaha.115.002816.

    CrossRef  CAS  Google Scholar 

  49. Tang WH, Wang Z, Shrestha K, Borowski AG, Wu Y, Troughton RW, Klein AL, Hazen SL. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail. 2015;21(2):91–6. https://doi.org/10.1016/j.cardfail.2014.11.006.

    CrossRef  PubMed  CAS  Google Scholar 

  50. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, Sartor RB, McIntyre TM, Silverstein RL, Tang WH, DiDonato JA, Brown JM, Lusis AJ, Hazen SL. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111–24. https://doi.org/10.1016/j.cell.2016.02.011.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  51. Koupenova M, Mick E, Mikhalev E, Benjamin EJ, Tanriverdi K, Freedman JE. Sex differences in platelet toll-like receptors and their association with cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2015;35(4):1030–7. https://doi.org/10.1161/atvbaha.114.304954.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  52. Organ CL, Otsuka H, Bhushan S, Wang Z, Bradley J, Trivedi R, Polhemus DJ, Tang WH, Wu Y, Hazen SL, Lefer DJ. Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure. Circ Heart Fail. 2016;9(1):e002314. https://doi.org/10.1161/circheartfailure.115.002314.

    CrossRef  PubMed  CAS  Google Scholar 

  53. Cheng S, Shah SH, Corwin EJ, Fiehn O, Fitzgerald RL, Gerszten RE, Illig T, Rhee EP, Srinivas PR, Wang TJ, Jain M. Potential impact and study considerations of metabolomics in cardiovascular health and disease: a scientific statement from the American Heart Association. Circ Cardiovasc Genet. 2017;10(2):pii: e000032. https://doi.org/10.1161/hcg.0000000000000032.

    CrossRef  Google Scholar 

  54. Fiorucci S, Zampella A, Cirino G, Bucci M, Distrutti E. Decoding the vasoregulatory activities of bile acid-activated receptors in systemic and portal circulation: role of gaseous mediators. Am J Phys Heart Circ Phys. 2017;312(1):H21–h32. https://doi.org/10.1152/ajpheart.00577.2016.

    CrossRef  Google Scholar 

  55. Duboc H, Rainteau D, Rajca S, Humbert L, Farabos D, Maubert M, Grondin V, Jouet P, Bouhassira D, Seksik P, Sokol H, Coffin B, Sabate JM. Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil. 2012;24(6):513–520., e246-517. https://doi.org/10.1111/j.1365-2982.2012.01893.x.

    CrossRef  PubMed  CAS  Google Scholar 

  56. Klem F, Wadhwa A, Prokop LJ, Sundt WJ, Farrugia G, Camilleri M, Singh S, Grover M. Prevalence, risk factors, and outcomes of irritable bowel syndrome after infectious enteritis: a systematic review and meta-analysis. Gastroenterology. 2017;152(5):1042–1054.e1041. https://doi.org/10.1053/j.gastro.2016.12.039.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  57. Rogler G, Rosano G. The heart and the gut. Eur Heart J. 2014;35(7):426–30. https://doi.org/10.1093/eurheartj/eht271.

    CrossRef  PubMed  Google Scholar 

  58. Zabell A, Tang WH. Targeting the microbiome in heart failure. Curr Treat Options Cardiovasc Med. 2017;19(4):27. https://doi.org/10.1007/s11936-017-0528-4.

    CrossRef  PubMed  Google Scholar 

  59. Kallio KA, Hätönen KA, Lehto M, Salomaa V, Mannisto S, Pussinen PJ. Endotoxemia, nutrition, and cardiometabolic disorders. Acta Diabetol. 2015;52(2):395–404. https://doi.org/10.1007/s00592-014-0662-3.

  60. Piya MK, Harte AL, McTernan PG. Metabolic endotoxaemia: is it more than just a gut feeling? Curr Opin Lipidol. 2013;24(1):78–85. https://doi.org/10.1097/MOL.0b013e32835b4431.

    CrossRef  PubMed  CAS  Google Scholar 

  61. Manukyan MC, Weil BR, Wang Y, Abarbanell AM, Herrmann JL, Poynter JA, Brewster BD, Meldrum DR. Female stem cells are superior to males in preserving myocardial function following endotoxemia. Am J Physiol Regul Integr Comp Physiol. 2011;300(6):R1506–14. https://doi.org/10.1152/ajpregu.00518.2010.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  62. Pasini E, Aquilani R, Testa C, Baiardi P, Angioletti S, Boschi F, Verri M, Dioguardi F. Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail. 2016;4:220–7. https://doi.org/10.1016/j.jchf.2015.10.009.

    CrossRef  PubMed  Google Scholar 

  63. Friedman CR, Neimann J, Wegener HC, Tauxe RV. Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. In: Nachamkin I, Blaser MJ, editors. Campylobacter, vol II/6. Washington, DC: ASM International; 2000. p. 121–38.

    Google Scholar 

  64. Liljestrand JM, Paju S, Buhlin K, Persson RG, Sarna S, Nieminen MS, Sinisalo J, Mantyla P, Pussinen PJ. Lipopolysaccharide, a possible molecular mediator between periodontitis and coronary artery disease. J Clin Periodontol. 2017;44(8):784–92. https://doi.org/10.1111/jcpe.12751.

    CrossRef  PubMed  CAS  Google Scholar 

  65. Hyvarinen K, Salminen A, Salomaa V, Pussinen PJ. Systemic exposure to a common periodontal pathogen and missing teeth are associated with metabolic syndrome. Acta Diabetol. 2015;52:179–82. https://doi.org/10.1007/s00592-014-0586-y.

    CrossRef  PubMed  CAS  Google Scholar 

  66. Player MS, Arch G, Mainous I, Everett CJ, Diaz VA, Knoll ME, Wright RU. Chlamydia pneumoniae and progression of subclinical atherosclerosis. Eur J Prev Cardiol. 2014;21(5):559–65. https://doi.org/10.1177/2047487312472078.

  67. Laek B, Szklo M, McClelland RL, Ding J, Tsai MY, Bluemke DA, Tracy R, Matsushita K. The prospective association of Chlamydia pneumoniae and four other pathogens with development of coronary artery calcium: the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis. 2013;230(2):268–74. https://doi.org/10.1016/j.atherosclerosis.2013.07.053

    CrossRef  CAS  PubMed  Google Scholar 

  68. Lajunen T, Bloigu A, Paldanius M, Pouta A, Laitinen J, Ruokonen A, Hartikainen AL, Savolainen M, Herzig KH, Leinonen M, Saikku P, Järvelin MR. The association of body mass index, waist and hip circumference, and waist-hip ratio with Chlamydia pneumoniae IgG antibodies and high-sensitive C-reactive protein at 31 years of age in Northern Finland Birth Cohort 1966. Int J Obes. 2011;35(12):1470–8.

    Google Scholar 

  69. Ibrahim A, Morais S, Ferro A, Lunet N, Peleteiro B. Sex-differences in the prevalence of Helicobacter pylori infection in pediatric and adult populations: systematic review and meta-analysis of 244 studies. Dig Liver Dis. 2017;49(7):742–9. https://doi.org/10.1016/j.dld.2017.03.019.

Download references

Acknowledgements

We thank Linda J. Larson-Prior for stimulating discussions. This work was funded in part by the Arkansas Research Alliance and the Helen Adams & Arkansas Research Alliance Professor & Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Ussery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Cabal, A., Wassenaar, T.M., Ussery, D.W. (2018). Gender Differences in the Gut Microbiome and How These Affect Cardiovascular Diseases. In: Mehta, J., McSweeney, J. (eds) Gender Differences in the Pathogenesis and Management of Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-71135-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71135-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71134-8

  • Online ISBN: 978-3-319-71135-5

  • eBook Packages: MedicineMedicine (R0)