Skip to main content

Cardiovascular Risks of Impaired Fertility and Assisted Reproductive Therapy

  • 502 Accesses

Abstract

Pregnancy history is important in assessing cardiovascular (CV) risk in women. Due to the tremendous changes that occur during pregnancy with regard to hemodynamic and metabolic alterations, pregnancy is often referred to as a stress test, potentially unmasking conditions that can increase CV risk in women, such as pre-eclampsia, gestational diabetes, and gestational hypertension. Adverse pregnancy outcomes also include neonatal outcomes that increase maternal CV risk, such as intrauterine growth restriction and preterm birth. These associations indicate that the milieu under which children are carried to term influences not only the child but serves as a risk marker for future maternal health. Similarly, emerging evidence suggests that infertility conditions and therapies to improve fertility may increase maternal long-term CV risk. Study and discussion of such topics is important, as CV disease remains the leading cause of death in women.

Keywords

  • Cardiovascular disease
  • Risk
  • Pregnancy history
  • Infertility
  • Assisted reproductive technology

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-71135-5_6
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-71135-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)
Hardcover Book
USD   149.00
Price excludes VAT (USA)

References

  1. Martin AS, Monsour M, Kissin DM, et al. Trends in severe maternal morbidity after assisted reproductive technology in the United States, 2008–2012. Obstet Gynecol. 2016;127(1):59–66.

    CrossRef  PubMed  Google Scholar 

  2. Pepine CJ, Park K. Fertility therapy and long-term cardiovascular risk: raising more questions than answers? J Am Coll Cardiol. 2017;70(10):1214–5.

    CrossRef  PubMed  Google Scholar 

  3. Moran LJ, Misso ML, Wild RA, et al. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2010;16(4):347–63.

    CrossRef  CAS  PubMed  Google Scholar 

  4. Sirmans SM, Parish RC, Blake S, et al. Epidemiology and comorbidities of polycystic ovary syndrome in an indigent population. J Investig Med. 2014;62(6):868–74.

    CrossRef  PubMed  Google Scholar 

  5. Legro RS, Kunselman AR, Dunaif A. Prevalence and predictors of dyslipidemia in women with polycystic ovary syndrome. Am J Med. 2001;111(8):607–13.

    CrossRef  CAS  PubMed  Google Scholar 

  6. Vgontzas AN, Legro RS, Bixler EO, et al. Polycystic ovary syndrome is associated with obstructive sleep apnea and daytime sleepiness: role of insulin resistance. J Clin Endocrinol Metab. 2001;86(2):517–20.

    PubMed  CAS  Google Scholar 

  7. Chang AY, Oshiro J, Ayers C, et al. Influence of race/ethnicity on cardiovascular risk factors in polycystic ovary syndrome, the Dallas Heart Study. Clin Endocrinol. 2016;85(1):92–9.

    CrossRef  Google Scholar 

  8. Boulman N, Levy Y, Leiba R, et al. Increased C-reactive protein levels in the polycystic ovary syndrome: a marker of cardiovascular disease. J Clin Endocrinol Metab. 2004;89(5):2160–5.

    CrossRef  CAS  PubMed  Google Scholar 

  9. Talbott EO, Guzick DS, Sutton-Tyrrell K, et al. Evidence for association between polycystic ovary syndrome and premature carotid atherosclerosis in middle-aged women. Arterioscler Thromb Vasc Biol. 2000;20(11):2414–21.

    CrossRef  CAS  PubMed  Google Scholar 

  10. Hu FB, Grodstein F, Hennekens CH, et al. Age at natural menopause and risk of cardiovascular disease. Arch Intern Med. 1999;159(10):1061–6.

    CrossRef  CAS  PubMed  Google Scholar 

  11. Jacobsen BK, Knutsen SF, Fraser GE. Age at natural menopause and total mortality and mortality from ischemic heart disease: the Adventist Health Study. J Clin Epidemiol. 1999;52(4):303–7.

    CrossRef  CAS  PubMed  Google Scholar 

  12. Snowdon DA. Early natural menopause and the duration of postmenopausal life. Findings from a mathematical model of life expectancy. J Am Geriatr Soc. 1990;38(4):402–8.

    CrossRef  CAS  PubMed  Google Scholar 

  13. Snowdon DA, Kane RL, Beeson WL, et al. Is early natural menopause a biologic marker of health and aging? Am J Public Health. 1989;79(6):709–14.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kalantaridou SN, Naka KK, Papanikolaou E, et al. Impaired endothelial function in young women with premature ovarian failure: normalization with hormone therapy. J Clin Endocrinol Metab. 2004;89(8):3907–13.

    CrossRef  CAS  PubMed  Google Scholar 

  15. Cooper GS, Sandler DP. Age at natural menopause and mortality. Ann Epidemiol. 1998;8(4):229–35.

    CrossRef  CAS  PubMed  Google Scholar 

  16. van der Schouw YT, van der Graaf Y, Steyerberg EW, et al. Age at menopause as a risk factor for cardiovascular mortality. Lancet. 1996;347(9003):714–8.

    CrossRef  PubMed  Google Scholar 

  17. Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33.

    CrossRef  CAS  PubMed  Google Scholar 

  18. Langrish JP, Mills NL, Bath LE, et al. Cardiovascular effects of physiological and standard sex steroid replacement regimens in premature ovarian failure. Hypertension. 2009;53(5):805–11.

    CrossRef  CAS  PubMed  Google Scholar 

  19. Mu F, Rich-Edwards J, Rimm EB, et al. Endometriosis and risk of coronary heart disease. Circ Cardiovasc Qual Outcomes. 2016;9(3):257–64.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Gunby J, Bissonnette F, Librach C, et al. Assisted reproductive technologies (ART) in Canada: 2007 results from the Canadian ART Register. Fertil Steril. 2011;95(2):542–547.e541–510.

    CrossRef  PubMed  Google Scholar 

  21. Talaulikar VS, Arulkumaran S. Reproductive outcomes after assisted conception. Obstet Gynecol Surv. 2012;67(9):566–83.

    CrossRef  PubMed  Google Scholar 

  22. Belanoff C, Declercq ER, Diop H, et al. Severe maternal morbidity and the use of assisted reproductive technology in Massachusetts. Obstet Gynecol. 2016;127(3):527–34.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Wang ET, Ozimek JA, Greene N, et al. Impact of fertility treatment on severe maternal morbidity. Fertil Steril. 2016;106(2):423–6.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Söderström-Anttila V, Tiitinen A, Foudila T, et al. Obstetric and perinatal outcome after oocyte donation: comparison with in-vitro fertilization pregnancies. Hum Reprod. 1998;13(2):483–90.

    CrossRef  PubMed  Google Scholar 

  25. Wiggins DA, Main E. Outcomes of pregnancies achieved by donor egg in vitro fertilization—a comparison with standard in vitro fertilization pregnancies. Am J Obstet Gynecol. 2005;192(6):2002–6. discussion 2006–2008

    CrossRef  PubMed  Google Scholar 

  26. Udell JA, Lu H, Redelmeier DA. Long-term cardiovascular risk in women prescribed fertility therapy. J Am Coll Cardiol. 2013;62(18):1704–12.

    CrossRef  PubMed  Google Scholar 

  27. Ben-Yaakov RD, Kessous R, Shoham-Vardi I, et al. Fertility treatments in women who become pregnant and carried to viability, and the risk for long-term maternal cardiovascular morbidity. Am J Perinatol. 2016;33(14):1388–93.

    CrossRef  PubMed  Google Scholar 

  28. Nastri CO, Ferriani RA, Rocha IA, et al. Ovarian hyperstimulation syndrome: pathophysiology and prevention. J Assist Reprod Genet. 2010;27(2–3):121–8.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  29. Ceelen M, van Weissenbruch MM, Vermeiden JP, et al. Cardiometabolic differences in children born after in vitro fertilization: follow-up study. J Clin Endocrinol Metab. 2008;93(5):1682–8.

    CrossRef  CAS  PubMed  Google Scholar 

  30. Scherrer U, Rimoldi SF, Rexhaj E, et al. Systemic and pulmonary vascular dysfunction in children conceived by assisted reproductive technologies. Circulation. 2012;125(15):1890–6.

    CrossRef  PubMed  Google Scholar 

  31. Valenzuela-Alcaraz B, Crispi F, Bijnens B, et al. Assisted reproductive technologies are associated with cardiovascular remodeling in utero that persists postnatally. Circulation. 2013;128(13):1442–50.

    CrossRef  PubMed  Google Scholar 

  32. Xu GF, Zhang JY, Pan HT, et al. Cardiovascular dysfunction in offspring of ovarian-hyperstimulated women and effects of estradiol and progesterone: a retrospective cohort study and proteomics analysis. J Clin Endocrinol Metab. 2014;99(12):E2494–503.

    CrossRef  CAS  PubMed  Google Scholar 

  33. Reynolds LP, Borowicz PP, Palmieri C, et al. Placental vascular defects in compromised pregnancies: effects of assisted reproductive technologies and other maternal stressors. Adv Exp Med Biol. 2014;814:193–204.

    CrossRef  PubMed  Google Scholar 

  34. Roos-Hesselink JW, Johnson MR. Does fertility therapy hamper cardiovascular outcome? J Am Coll Cardiol. 2013;62(18):1713–4.

    CrossRef  PubMed  Google Scholar 

  35. Udell JA, Lu H, Redelmeier DA. Failure of fertility therapy and subsequent adverse cardiovascular events. CMAJ. 2017;189(10):E391–7.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  36. Parikh NI, Cnattingius S, Mittleman MA, et al. Subfertility and risk of later life maternal cardiovascular disease. Hum Reprod. 2012;27(2):568–75.

    CrossRef  PubMed  Google Scholar 

  37. Binder H, Dittrich R, Einhaus F, et al. Update on ovarian hyperstimulation syndrome: part 1—incidence and pathogenesis. Int J Fertil Womens Med. 2007;52(1):11–26.

    PubMed  CAS  Google Scholar 

  38. Gonçalves PB, Ferreira R, Gasperin B, et al. Role of angiotensin in ovarian follicular development and ovulation in mammals: a review of recent advances. Reproduction. 2012;143(1):11–20.

    CrossRef  CAS  PubMed  Google Scholar 

  39. Hassan E, Creatsas G, Mastorakos G, et al. Clinical implications of the ovarian/endometrial renin-angiotensin-aldosterone system. Ann N Y Acad Sci. 2000;900:107–18.

    CrossRef  CAS  PubMed  Google Scholar 

  40. Henriksson P, Westerlund E, Wallén H, et al. Incidence of pulmonary and venous thromboembolism in pregnancies after in vitro fertilisation: cross sectional study. BMJ. 2013;346:e8632.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  41. Morris RS, Paulson RJ. Increased angiotensin-converting enzyme activity in a patient with severe ovarian hyperstimulation syndrome. Fertil Steril. 1999;71(3):562–3.

    CrossRef  CAS  PubMed  Google Scholar 

  42. Vloeberghs V, Peeraer K, Pexsters A, et al. Ovarian hyperstimulation syndrome and complications of ART. Best Pract Res Clin Obstet Gynaecol. 2009;23(5):691–709.

    CrossRef  PubMed  Google Scholar 

  43. Oliver-Williams CT, Heydon EE, Smith GC, et al. Miscarriage and future maternal cardiovascular disease: a systematic review and meta-analysis. Heart. 2013;99(22):1636–44.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  44. Parker DR, Lu B, Sands-Lincoln M, et al. Risk of cardiovascular disease among postmenopausal women with prior pregnancy loss: the women’s health initiative. Ann Fam Med. 2014;12(4):302–9.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  45. Lawlor DA, Emberson JR, Ebrahim S, et al. Is the association between parity and coronary heart disease due to biological effects of pregnancy or adverse lifestyle risk factors associated with child-rearing? Findings from the British Women’s Heart and Health Study and the British Regional Heart Study. Circulation. 2003;107(9):1260–4.

    CrossRef  PubMed  Google Scholar 

  46. Ness RB, Harris T, Cobb J, et al. Number of pregnancies and the subsequent risk of cardiovascular disease. N Engl J Med. 1993;328(21):1528–33.

    CrossRef  CAS  PubMed  Google Scholar 

  47. Parikh NI, Cnattingius S, Dickman PW, et al. Parity and risk of later-life maternal cardiovascular disease. Am Heart J. 2010;159(2):215–221.e216.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl J. Pepine M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Park, K., Pepine, C.J. (2018). Cardiovascular Risks of Impaired Fertility and Assisted Reproductive Therapy. In: Mehta, J., McSweeney, J. (eds) Gender Differences in the Pathogenesis and Management of Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-71135-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71135-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71134-8

  • Online ISBN: 978-3-319-71135-5

  • eBook Packages: MedicineMedicine (R0)