Skip to main content

Gender Differences in Cardiomyopathies

Abstract

Cardiomyopathies are a group of disorders constituting a wide variety of specific diseases, but the available evidence indicates that significant gender related differences are present in several cardiomyopathies which is attributed to multiple factors. Firstly, the mode of inheritance may affect the sex ratio of cardiomyopathy manifestation. Secondly, sex hormones seem to have profound effects on the prevalence and severity of cardiomyopathies. Thirdly, gender effects may confound sex differences in cardiomyopathies. Where sex refers to biological differences between males and females, gender refers to the identity and behavioral aspects of differences between the sexes, and is subject to socio-cultural and psychological influences. This chapter describes the role of these factors in the manifestation of gender differences in various cardiomyopathies.

Keywords

  • Female
  • Cardiomyopathy
  • Differences
  • Gender
  • Heart failure

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-71135-5_5
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-71135-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)
Hardcover Book
USD   149.00
Price excludes VAT (USA)

References

  1. Maas AH, van der Schouw YT, Regitz-Zagrosek V, Swahn E, Appelman YE, Pasterkamp G, Ten Cate H, Nilsson PM, Huisman MV, Stam HC, Eizema K, Stramba-Badiale M. Red alert for women’s heart: the urgent need for more research and knowledge on cardiovascular disease in women: proceedings of the workshop held in Brussels on gender differences in cardiovascular disease, 29 September 2010. Eur Heart J. 2011;32:1362–8.

    CrossRef  PubMed  Google Scholar 

  2. Shaw LJ, BaireyMerz CN, Pepine CJ, Reis SE, Bittner V, Kelsey SF, Olson M, Johnson BD, Mankad S, Sharaf BL, Rogers WJ, Wessel TR, Arant CB, Pohost GM, Lerman A, Quyyumi AA, Sopko G, Investigators WISE. Insights from the NHLBI-Sponsored Women’s Ischemia Syndrome Evaluation (WISE) Study: part I: gender differences in traditional and novel risk factors, symptom evaluation, and gender-optimized diagnostic strategies. J Am Coll Cardiol. 2006;47:S4–S20.

    CrossRef  PubMed  Google Scholar 

  3. BaireyMerz CN, Shaw LJ, Reis SE, Bittner V, Kelsey SF, Olson M, Johnson BD, Pepine CJ, Mankad S, Sharaf BL, Rogers WJ, Pohost GM, Lerman A, Quyyumi AA, Sopko G, Investigators WISE. Insights from the NHLBI-Sponsored Women’s Ischemia Syndrome Evaluation (WISE) Study: part II: gender differences in presentation, diagnosis, and outcome with regard to gender-based pathophysiology of atherosclerosis and macrovascular and microvascular coronary disease. J Am Coll Cardiol. 2006;47:S21–9.

    CrossRef  Google Scholar 

  4. Shaw LJ, Bugiardini R, Merz CN. Women and ischemic heart disease: evolving knowledge. J Am Coll Cardiol. 2009;54:1561–75.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Hsich EM, Pina IL. Heartfailure in women: a need for prospective data. J Am Coll Cardiol. 2009;54:491.

    CrossRef  PubMed  Google Scholar 

  6. Curtis AB, Narasimha D. Arrhythmias in women. Clin Cardiol. 2012;35:166–71.

    CrossRef  PubMed  Google Scholar 

  7. Wizemann TM, Pardue M-L, editors. Committee on Understanding the Biology of Sex and Gender Differences, Board on Health Sciences Policy, Institute of Medicine. Exploring the Biological Contributions to Human Health. Does Sex Matter? Washington, DC: National Academy Press; 2001.

    Google Scholar 

  8. Wenger NK. Women and coronary heart disease: a century after Herrick: understudied, underdiagnosed, and undertreated. Circulation. 2012;126:604–11.

    CrossRef  PubMed  Google Scholar 

  9. Stramba-Badiale M, Fox KM, Priori SG, Collins P, Daly C, Graham I, Jonsson B, Schenck-Gustafsson K, Tendera M. Cardiovascular diseases in women: a statement from the policy conference of the European Society of Cardiology. Eur Heart J. 2006;27:994–1005.

    CrossRef  PubMed  Google Scholar 

  10. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kuhl U, Maisch B, McKenna WJ, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008;29:270–6.

    CrossRef  Google Scholar 

  11. Maron BJ, WJ MK, Danielson GK, Kappenberger LJ, Kuhn HJ, Seidman CE, Shah PM, Spencer WH 3rd, Spirito P, Ten Cate FJ, Wigle ED. American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents, European Society of Cardiology Committee for Practice Guidelines. American College of Cardiology/European Society of Cardiology Clinical Expert Consensus Document on Hypertrophic Cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. Eur Heart J. 2003;24:1965–91.

    CrossRef  PubMed  Google Scholar 

  12. Elliott P, WJ MK. Hypertrophic cardiomyopathy. Lancet. 2004;363:1881–91.

    CrossRef  CAS  PubMed  Google Scholar 

  13. Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet. 2013;381:242–55.

    CrossRef  PubMed  Google Scholar 

  14. Marian AJ. Modifier genes for hypertrophic cardiomyopathy. Curr Opin Cardiol. 2002;17:242–52.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  15. Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, Benaiche A, Isnard R, Dubourg O, Burban M, Gueffet JP, Millaire A, Desnos M, Schwartz K, Hainque B, Komajda M, EUROGENE Heart Failure Project. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 2003;107:2227–32.

    CrossRef  PubMed  Google Scholar 

  16. Olivotto I, Maron MS, Adabag AS, Casey SA, Vargiu D, Link MS, Udelson JE, Cecchi F, Maron BJ. Gender-related differences in the clinical presentation and outcome of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2005;46:480–7.

    CrossRef  PubMed  Google Scholar 

  17. Dimitrow PP, Czarnecka D, Jaszcz KK, Dubiel JS. Sex differences in age at onset of symptoms in patients with hypertrophic cardiomyopathy. J Cardiovasc Risk. 1997;4:33–5.

    CrossRef  CAS  PubMed  Google Scholar 

  18. Lin CL, Chiang CW, Shaw CK, Chu PH, Chang CJ, Ko YL. Gender differences in the presentation of adult obstructive hypertrophic cardiomyopathy with resting gradient: a study of 122 patients. Jpn Circ J. 1999;63:859–64.

    CrossRef  CAS  PubMed  Google Scholar 

  19. Kubo T, Kitaoka H, Okawa M, Hirota T, Hayato K, Yamasaki N, Matsumura Y, Yabe T, Doi YL. Gender-specific differences in the clinical features of hypertrophic cardiomyopathy in a community-based Japanese population: results from Kochi RYOMA study. J Cardiol. 2010;56:314–9.

    CrossRef  PubMed  Google Scholar 

  20. Schulz-Menger J, Abdel-Aty H, Rudolph A, Elgeti T, Messroghli D, Utz W, Boye P, Bohl S, Busjahn A, Hamm B, Dietz R. Gender-specific differences in left ventricular remodelling and fibrosis in hypertrophic cardiomyopathy: insights from cardiovascular magnetic resonance. Eur J Heart Fail. 2008;10:850–4.

    CrossRef  PubMed  Google Scholar 

  21. Schafer E, Baron K, Widmer U, Deegan P, Neumann HP, Sunder-Plassmann G, Johansson JO, Whybra C, Ries M, Pastores GM, Mehta A, Beck M, Gal A. Thirty-four novel mutations of the GLA gene in 121 patients with Fabry disease. Hum Mutat. 2005;25:412.

    CrossRef  PubMed  Google Scholar 

  22. Wilcox WR, Oliveira JP, Hopkin RJ, Ortiz A, Banikazemi M, Feldt-Rasmussen U, Sims K, Waldek S, Pastores GM, Lee P, Eng CM, Marodi L, Stanford KE, Breunig F, Wanner C, Warnock DG, Lemay RM, Germain DP, Fabry Registry. Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab. 2008;93:112–28.

    CrossRef  CAS  PubMed  Google Scholar 

  23. Deegan PB, Baehner AF, Barba Romero MA, Hughes DA, Kampmann C, Beck M, European FOS Investigators. Natural history of Fabry disease in females in the Fabry Outcome Survey. J Med Genet. 2006;43:347–52.

    CrossRef  CAS  PubMed  Google Scholar 

  24. Linhart A, Palecek T, Bultas J, Ferguson JJ, Hrudova J, Karetova D, Zeman J, Ledvinova J, Poupetova H, Elleder M, Aschermann M. New insights in cardiac structural changes in patients with Fabry’s disease. Am Heart J. 2000;139:1101–8.

    CrossRef  CAS  PubMed  Google Scholar 

  25. Niemann M, Herrmann S, Hu K, Breunig F, Strotmann J, Beer M, Machann W, Voelker W, Ertl G, Wanner C, Weidemann F. Differences in Fabry cardiomyopathy between female and male patients: consequences for diagnostic assessment. JACC Cardiovasc Imaging. 2011;4:592–601.

    CrossRef  PubMed  Google Scholar 

  26. Rapezzi C, Quarta CC, Riva L, Longhi S, Gallelli I, Lorenzini M, Ciliberti P, Biagini E, Salvi F, Branzi A. Transthyretin-related amyloidoses and the heart: a clinical overview. Nat Rev Cardiol. 2010;7:398–408.

    CrossRef  CAS  PubMed  Google Scholar 

  27. Rapezzi C, Riva L, Quarta CC, Perugini E, Salvi F, Longhi S, Ciliberti P, Pastorelli F, Biagini E, Leone O, Cooke RM, Bacchi-Reggiani L, Ferlini A, Cavo M, Merlini G, Perlini S, Pasquali S, Branzi A. Gender-related risk of myocardial involvement in systemic amyloidosis. Amyloid. 2008;15:40–8.

    CrossRef  CAS  PubMed  Google Scholar 

  28. Hornsten R, Pennlert J, Wiklund U, Lindqvist P, Jensen SM, Suhr OB. Heart complications in familial transthyretin amyloidosis: impact of age and gender. Amyloid. 2010;17:63–8.

    CrossRef  PubMed  Google Scholar 

  29. Cano A, Ovaert C, Vianey-Saban C, Chabrol B. Carnitine membrane transporter deficiency: a rare treatable cause of cardiomyopathy and anemia. Pediatr Cardiol. 2008;29:163–5.

    CrossRef  PubMed  Google Scholar 

  30. Magoulas PL, El-Hattab AW. Systemic primary carnitine deficiency: an overview of clinical manifestations, diagnosis, and management. Orphanet J Rare Dis. 2012;7:68.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  31. Vijay S, Patterson A, Olpin S, Henderson MJ, Clark S, Day C, Savill G, Walter JH. Carnitine transporter defect: diagnosis in asymptomatic adult women following analysis of acylcarnitines in their newborn infants. J Inherit Metab Dis. 2006;29:627–30.

    CrossRef  CAS  PubMed  Google Scholar 

  32. Rowland T, Roti M. Influence of sex on the ‘Athlete's Heart’ in trained cyclists. J Sci Med Sport. 2010;13:475–8.

    CrossRef  PubMed  Google Scholar 

  33. Whyte GP, George K, Sharma S, Firoozi S, Stephens N, Senior R, McKenna WJ. The upper limit of physiological cardiac hypertrophy in elite male and female athletes: the British experience. Eur J Appl Physiol. 2004;92:592–7.

    CrossRef  CAS  PubMed  Google Scholar 

  34. Pelliccia A, Maron MS, Maron BJ. Assessment of left ventricular hypertrophy in a trained athlete: differential diagnosis of physiologic athlete’s heart from pathologic hypertrophy. Prog Cardiovasc Dis. 2012;54:387–96.

    CrossRef  PubMed  Google Scholar 

  35. Heidbuchel H, La Gerche A. The right heart in athletes. Evidence for exercise-induced arrhythmogenic right ventricular cardiomyopathy. Herzschrittmacherther Elektrophysiol. 2012;23:82–6.

    PubMed  CAS  Google Scholar 

  36. Goncalves I, Alves CH, Quintela T, Baltazar G, Socorro S, Saraiva MJ, Abreu R, Santos CR. Transthyretin is up-regulated by sex hormones in mice liver. Mol Cell Biochem. 2008;317:137–42.

    CrossRef  CAS  PubMed  Google Scholar 

  37. Burkett EL, Hershberger RE. Clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol. 2005;45:969–81.

    CrossRef  CAS  PubMed  Google Scholar 

  38. Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med. 1994;331:1564–75.

    CrossRef  CAS  PubMed  Google Scholar 

  39. Hoogerwaard EM, Bakker E, Ippel PF, Oosterwijk JC, Majoor-Krakauer DF, Leschot NJ, Van Essen AJ, Brunner HG, van der Wouw PA, Wilde AA, de Visser M. Signs and symptoms of Duchenne muscular dystrophy and Becker muscular dystrophy among carriers in The Netherlands: a cohort study. Lancet. 1999;353:2116–9.

    CrossRef  CAS  PubMed  Google Scholar 

  40. Schade van Westrum SM, Hoogerwaard EM, Dekker L, Standaar TS, Bakker E, Ippel PF, Oosterwijk JC, Majoor-Krakauer DF, van Essen AJ, Leschot NJ, Wilde AA, de Haan RJ, de Visser M, van der Kooi AJ. Cardiac abnormalities in a follow-up study on carriers of Duchenne and Becker muscular dystrophy. Neurology. 2011;77:62–6.

    CrossRef  CAS  PubMed  Google Scholar 

  41. Politano L, Nigro V, Nigro G, Petretta VR, Passamano L, Papparella S, Di Somma S, Comi LI. Development of cardiomyopathy in female carriers of Duchenne and Becker muscular dystrophies. JAMA. 1996;275:1335–8.

    CrossRef  CAS  PubMed  Google Scholar 

  42. Viggiano E, Picillo E, Cirillo A, Politano L. Comparison of X-chromosome inactivation in Duchenne muscle/myocardium-manifesting carriers, non-manifesting carriers and related daughters. Clin Genet. 2013;84:265–70.

    CrossRef  CAS  PubMed  Google Scholar 

  43. Fairweather D, Cooper LT Jr, Blauwet LA. Sex and gender differences in myocarditis and dilated cardiomyopathy. Curr Probl Cardiol. 2013;38:7–46.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  44. Roberts WC, McAllister HA, Ferrans VJ. Sarcoidosis of the heart A clinicopathologic study of 35 necropsy patients (group I) and review of 78 previously described necropsy patients (group II). Am J Med. 1977;63:86–108.

    CrossRef  CAS  PubMed  Google Scholar 

  45. Lewin RF, Mor R, Spitzer S, Arditti A, Hellman C, Agmon J. Echocardiographic evaluation of patients with systemic sarcoidosis. Am Heart J. 1985;110:116–22.

    CrossRef  CAS  PubMed  Google Scholar 

  46. Bernstein M, Konzelmann FW, Sidlick DM. Boeck’s sarcoid report of a case with visceral involvement. Arch Intern Med. 1929;44:721–34.

    CrossRef  Google Scholar 

  47. Burt VL, Whelton P, Roccella EJ, Brown C, Cutler JA, Higgins M, et al. Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988-1991. Hypertension. 1995;25:305–13.

    CrossRef  CAS  PubMed  Google Scholar 

  48. Stamler J, Stamler R, Riedlinger WF, Algera G, Roberts RH. Hypertension screening of 1 million Americans Community Hypertension Evaluation Clinic (CHEC) program, 1973 through 1975. JAMA. 1976;235:2299–306.

    CrossRef  CAS  PubMed  Google Scholar 

  49. Bazett HC. The time relations of the blood-pressure changes after excision of the adrenal glands, with some observations on blood volume changes. J Physiol. 1920;53:320–39.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mallat Z, Fornes P, Costagliola R, Esposito B, Belmin J, Lecomte D, et al. Age and gender effects on cardiomyocyte apoptosis in the normal human heart. J Gerontol A Biol Sci Med Sci. 2001;56:M719–23.

    CrossRef  CAS  PubMed  Google Scholar 

  51. Isensee J, Ruiz NP. Sexually dimorphic gene expression in mammalian somatic tissue. Gend Med. 2007;4(Suppl B):S75–95.

    CrossRef  PubMed  Google Scholar 

  52. Vitale C, Mendelsohn ME, Rosano GM. Gender differences in the cardiovascular effect of sex hormones. Nat Rev Cardiol. 2009;6:532–42.

    CrossRef  CAS  Google Scholar 

  53. Regitz-Zagrosek V, Becher E, Mahmoodzadeh S, Schubert C. Sex steroid hormones. In: Bader M, editor. Cardiovascular hormone systems: from molecular mechanisms to novel therapeutics. Weinheim, Germany: Wiley-Blackwell; 2008. p. 39–64.

    CrossRef  Google Scholar 

  54. Deslypere JP, Vermeulen A. Influence of age on steroid concentrations in skin and striated muscle in women and in cardiac muscle and lung tissue in men. J Clin Endocrinol Metab. 1985;61:648–53.

    CrossRef  CAS  PubMed  Google Scholar 

  55. Melchert RB, Kennedy RH, Acosta D Jr. Cardiovascular effects of steroidal agents. In: Acosta D, editor. Cardiovascular toxicology. London: Taylor & Francis; 2001. p. 425–75.

    Google Scholar 

  56. Scheuer J, Malhotra A, Schaible TF, Capasso J. Effects of gonadectomy and hormonal replacement on rat hearts. Circ Res. 1987;61:12–9.

    CrossRef  CAS  PubMed  Google Scholar 

  57. Fairweather D, Petri MA, Coronado MJ, Cooper LT Jr. Autoimmune heart disease: role of sex hormones and autoantibodies in disease pathogenesis. Expert Rev Clin Immunol. 2012;8:269–84.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sliwa K, Forster O, Libhaber E, Fett JD, Sundstron JB, Hilfiker-Kleiner D, et al. Peripartum cardiomyopathy: inflammatory markers as predictors of outcome in 100 prospectively studied patients. Eur Heart J. 2006;27:441–6.

    CrossRef  CAS  PubMed  Google Scholar 

  59. Sheppard R, Bedi M, Kubota T, Semigran MJ, Dec W, Holubkov R, et al. Myocardial expression of Fas and recovery of left ventricular function in patients with recent-onset cardiomyopathy. J Am Coll Cardiol. 2005;46:1036–42.

    CrossRef  CAS  PubMed  Google Scholar 

  60. Sliwa K, Skudicky D, Bergemann A, Candy G, Puren A, Sareli P. Peripartum cardiomyopathy: analysis of clinical outcome, left ventricular function, plasma levels of cytokines and Fas/APO-1. J Am Coll Cardiol. 2000;35:701–5.

    CrossRef  CAS  PubMed  Google Scholar 

  61. Bursi F, Weston SA, Redfield MM, Jacobsen SJ, Pakhomov S, Nkomo VT, et al. Systolic and diastolic heart failure in the community. JAMA. 2006;296:2209–16.

    CrossRef  CAS  PubMed  Google Scholar 

  62. Barsheshet A, Brenyo A, Goldenberg I, Moss AJ. Sex-related differences in patients’ responses to heart failure therapy. Nat Rev Cardiol. 2012;9(4):234–42.

    CrossRef  CAS  PubMed  Google Scholar 

  63. Lenzen MJ, Rosengren A, Scholte OP, Reimer WJ, Follath F, Boersma E, Simoons ML, et al. Management of patients with heart failure in clinical practice: differences between men and women. Heart. 2008;94:e10.

    CrossRef  CAS  PubMed  Google Scholar 

  64. Robinson T, Smith A, Channer KS. Reversible heart failure: the role of inflammatory activation. Postgrad Med J. 2011;87:110–5.

    CrossRef  PubMed  Google Scholar 

  65. Lahita RG. Sex hormones and immune function. In: Legato MJ, editor. Principles of gender-specific medicine. 2nd ed. Burlington, MA: Elsevier; 2010. p. 615–26.

    CrossRef  Google Scholar 

  66. Gilliver SC. Sex steroids as inflammatory regulators. J Steroid Biochem Mol Biol. 2010;120:105–15.

    CrossRef  CAS  PubMed  Google Scholar 

  67. Villablanca AC, Jayachandran M, Banka C. Atherosclerosis and sex hormones: current concepts. Clin Sci. 2010;119:493–513.

    CrossRef  CAS  PubMed  Google Scholar 

  68. McCrohon JA, Death AK, Nakhla S, Jessup W, Handelsman DJ, Stanley KK, et al. Androgen receptor expression is greater in macrophages from male than from female donors. A sex difference with implications for atherogenesis. Circulation. 2000;101:224–6.

    CrossRef  CAS  Google Scholar 

  69. Hammes SR, Levin ER. Minireview: recent advances in extranuclear steroid receptor actions. Endocrinology. 2011;152:4489–95.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hodgin JB, Krege JH, Reddick RL, Korach KS, Smithies O, Maeda N. Estrogen receptor alpha is a major mediator of 17beta-estradiol’s atheroprotective effects on lesion size in Apoe−/− mice. J Clin Invest. 2001;107:333–40.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cook IF. Sexual dimorphism of humoral immunity with vaccines. Vaccine. 2008;26:3551–5.

    CrossRef  CAS  Google Scholar 

  72. Fairweather D, Frisancho-Kiss S, Rose NR. Sex differences in autoimmune disease from a pathologic perspective. Am J Pathol. 2008;173:600–9.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  73. Papenfuss TL, Powell ND, McClain MA, Bedarf A, Singh A, Gienapp IE, et al. Estriol generates tolergenic dendritic cells in vivo that protect against autoimmunity. J Immunol. 2011;186:3346–55.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rubtsov A, Rubtsova K, Kappler JW, Marrack P. Genetic and hormonal factors in female-biased autoimmunity. Autoimmun Rev. 2010;9:494–8.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  75. Straub RH. The complex role of estrogens in inflammation. Endocr Rev. 2007;28:521–74.

    CrossRef  CAS  Google Scholar 

  76. Deshpande R, Khalili H, Pergolizzi RG, Michael SD, Change MD. Estradiol down-regulates LPS-induced cytokine production and NFκB activation in murine macrophages. Am J Reprod Immunol. 1997;38:46–54.

    CrossRef  CAS  Google Scholar 

  77. Evans MJ, Eckert A, Lai K, Adelman SJ, Harnish DC. Reciprocal antagonism between estrogen receptor and NF-kappaB activity in vivo. Circ Res. 2001;89:823–30.

    CrossRef  CAS  Google Scholar 

  78. Temple SE, Pham K, Glendenning P, Phillips M, Waterer GW. Endotoxin induced TNF and IL-10 mRNA production is higher in male than female donors: correlation with elevated expression of TLR4. Cell Immunol. 2008;251:69–71.

    CrossRef  CAS  PubMed  Google Scholar 

  79. Giron-Gonzalez JA, Moral FJ, Elvira J, Garcia-Gil D, Guerrero F, Gavilan I, et al. Consistent production of a higher TH1:TH2 cytokine ratio by stimulated T cells in men compared to women. Eur J Endocrinol. 2000;143:31–6.

    CrossRef  CAS  PubMed  Google Scholar 

  80. Saha Roy S, Vadlamudi RK. Role of estrogen receptor signaling in breast cancer metastasis. Int J Breast Cancer. 2012;2012:654698.

    CrossRef  CAS  PubMed  Google Scholar 

  81. Miller VM. In pursuit of scientific excellence—sex matters. Am J Physiol Heart Circ Physiol. 2012;302:H1771–2.

    CrossRef  CAS  PubMed  Google Scholar 

  82. Cutolo M, Brizzolara R, Atzeni F, Capellino S, Straub RH, Puttini PCS. The immunomodulatory effects of estrogens: clinical relevance in immune-mediated rheumatic diseases. Ann N Y Acad Sci. 2010;1193:36–42.

    CrossRef  CAS  PubMed  Google Scholar 

  83. Blauwet LA, Hayes SN, McManus D, Redberg RF, Walsh MN. Low rate of sex-specific reporting in cardiovascular trials. Mayo Clin Proc. 2007;82:166–70.

    CrossRef  PubMed  Google Scholar 

  84. The Institute of Medicine of the National Academies. Sex-specific reporting of scientific research: a workshop summary. Washington, DC: The National Academies Press; 2012. p. 1–59.

    Google Scholar 

  85. Frisancho-Kiss S, Nyland JF, Davis SE, Frisancho JA, Barrett MA, Rose NR, et al. Sex differences in coxsackievirus B3-induced myocarditis: IL-12Rβ1 signaling and IFN-γ increase inflammation in males independent from STAT4. Brain Res. 2006;1126:139–47.

    CrossRef  CAS  PubMed  Google Scholar 

  86. Coronado MJ, Brandt JE, Kim E, Bucek A, Bedja D, Abston ED, et al. Testosterone and interleukin-1b increase cardiac remodeling during acute coxsackievirus B3 myocarditis via serpin A 3n. Am J Physiol Heart Circ Physiol. 2012;302:H1726–36.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  87. Huber SA. Coxsackievirus B3-induced myocarditis: infection of females during the estrus phase of the ovarian cycle leads to activation of T regulatory cells. Virology. 2008;378:292–8.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  88. Huber SA, Pfaeffle B. Differential Th1 and Th2 cell responses in male and female BALB/c mice infected with coxsackievirus group B type 3. J Virol. 1994;68:5126–32.

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Huber SA. Increased susceptibility of male BALB/c mice to coxsackievirus B3-induced myocarditis: role of CD1d. Med Microbiol Immunol. 2005;194:121–7.

    CrossRef  CAS  PubMed  Google Scholar 

  90. Frisancho-Kiss S, Coronado MJ, Frisancho JA, Lau VM, Rose NR, Klein SL, et al. Gonadectomy of male BALB/c mice increases Tim-3+ alternatively activated M2 macrophages, Tim-3+ T cells, Th2 cells and Treg in the heart during acute coxsackievirus-induced myocarditis. Brain Behav Immun. 2009;23:649–57.

    CrossRef  CAS  Google Scholar 

  91. Huber SA, Kupperman J, Newell MK. Estradiol prevents and testosterone promotes Fas-dependent apoptosis in CD4+ Th2 cells by altering Bcl2 expression. Lupus. 1999;8:384–7.

    CrossRef  CAS  PubMed  Google Scholar 

  92. Li K, Xu W, Guo Q, Jiang Z, Wang P, Yue Y, et al. Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ Res. 2009;105:353–64.

    CrossRef  CAS  PubMed  Google Scholar 

  93. Fairweather D, Frisancho-Kiss S, Yusung SA, Barrett MA, Davis SE, Gatewood SJL, et al. IFN-γ protects against chronic viral myocarditis by reducing mast cell degranulation, fibrosis, and the profibrotic cytokines TGF-β1, IL-1β, and IL-4 in the heart. Am J Pathol. 2004;165:1883–94.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fairweather D, Yusung S, Frisancho S, Barrett M, Gatewood S, Steele R, et al. IL-12Rβ1 and TLR4 increase IL-1β and IL-18-associated myocarditis and coxsackievirus replication. J Immunol. 2003;170:4731–7.

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabha Bhatti M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Siraj, A., Hasan, R., Bhatti, S. (2018). Gender Differences in Cardiomyopathies. In: Mehta, J., McSweeney, J. (eds) Gender Differences in the Pathogenesis and Management of Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-71135-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71135-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71134-8

  • Online ISBN: 978-3-319-71135-5

  • eBook Packages: MedicineMedicine (R0)