Gender Differences in Cardiomyopathies

  • Aisha Siraj
  • Rimsha Hasan
  • Sabha BhattiEmail author


Cardiomyopathies are a group of disorders constituting a wide variety of specific diseases, but the available evidence indicates that significant gender related differences are present in several cardiomyopathies which is attributed to multiple factors. Firstly, the mode of inheritance may affect the sex ratio of cardiomyopathy manifestation. Secondly, sex hormones seem to have profound effects on the prevalence and severity of cardiomyopathies. Thirdly, gender effects may confound sex differences in cardiomyopathies. Where sex refers to biological differences between males and females, gender refers to the identity and behavioral aspects of differences between the sexes, and is subject to socio-cultural and psychological influences. This chapter describes the role of these factors in the manifestation of gender differences in various cardiomyopathies.


Female Cardiomyopathy Differences Gender Heart failure 


  1. 1.
    Maas AH, van der Schouw YT, Regitz-Zagrosek V, Swahn E, Appelman YE, Pasterkamp G, Ten Cate H, Nilsson PM, Huisman MV, Stam HC, Eizema K, Stramba-Badiale M. Red alert for women’s heart: the urgent need for more research and knowledge on cardiovascular disease in women: proceedings of the workshop held in Brussels on gender differences in cardiovascular disease, 29 September 2010. Eur Heart J. 2011;32:1362–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Shaw LJ, BaireyMerz CN, Pepine CJ, Reis SE, Bittner V, Kelsey SF, Olson M, Johnson BD, Mankad S, Sharaf BL, Rogers WJ, Wessel TR, Arant CB, Pohost GM, Lerman A, Quyyumi AA, Sopko G, Investigators WISE. Insights from the NHLBI-Sponsored Women’s Ischemia Syndrome Evaluation (WISE) Study: part I: gender differences in traditional and novel risk factors, symptom evaluation, and gender-optimized diagnostic strategies. J Am Coll Cardiol. 2006;47:S4–S20.CrossRefPubMedGoogle Scholar
  3. 3.
    BaireyMerz CN, Shaw LJ, Reis SE, Bittner V, Kelsey SF, Olson M, Johnson BD, Pepine CJ, Mankad S, Sharaf BL, Rogers WJ, Pohost GM, Lerman A, Quyyumi AA, Sopko G, Investigators WISE. Insights from the NHLBI-Sponsored Women’s Ischemia Syndrome Evaluation (WISE) Study: part II: gender differences in presentation, diagnosis, and outcome with regard to gender-based pathophysiology of atherosclerosis and macrovascular and microvascular coronary disease. J Am Coll Cardiol. 2006;47:S21–9.CrossRefGoogle Scholar
  4. 4.
    Shaw LJ, Bugiardini R, Merz CN. Women and ischemic heart disease: evolving knowledge. J Am Coll Cardiol. 2009;54:1561–75.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hsich EM, Pina IL. Heartfailure in women: a need for prospective data. J Am Coll Cardiol. 2009;54:491.CrossRefPubMedGoogle Scholar
  6. 6.
    Curtis AB, Narasimha D. Arrhythmias in women. Clin Cardiol. 2012;35:166–71.CrossRefPubMedGoogle Scholar
  7. 7.
    Wizemann TM, Pardue M-L, editors. Committee on Understanding the Biology of Sex and Gender Differences, Board on Health Sciences Policy, Institute of Medicine. Exploring the Biological Contributions to Human Health. Does Sex Matter? Washington, DC: National Academy Press; 2001.Google Scholar
  8. 8.
    Wenger NK. Women and coronary heart disease: a century after Herrick: understudied, underdiagnosed, and undertreated. Circulation. 2012;126:604–11.CrossRefPubMedGoogle Scholar
  9. 9.
    Stramba-Badiale M, Fox KM, Priori SG, Collins P, Daly C, Graham I, Jonsson B, Schenck-Gustafsson K, Tendera M. Cardiovascular diseases in women: a statement from the policy conference of the European Society of Cardiology. Eur Heart J. 2006;27:994–1005.CrossRefPubMedGoogle Scholar
  10. 10.
    Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kuhl U, Maisch B, McKenna WJ, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008;29:270–6.CrossRefGoogle Scholar
  11. 11.
    Maron BJ, WJ MK, Danielson GK, Kappenberger LJ, Kuhn HJ, Seidman CE, Shah PM, Spencer WH 3rd, Spirito P, Ten Cate FJ, Wigle ED. American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents, European Society of Cardiology Committee for Practice Guidelines. American College of Cardiology/European Society of Cardiology Clinical Expert Consensus Document on Hypertrophic Cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. Eur Heart J. 2003;24:1965–91.CrossRefPubMedGoogle Scholar
  12. 12.
    Elliott P, WJ MK. Hypertrophic cardiomyopathy. Lancet. 2004;363:1881–91.CrossRefPubMedGoogle Scholar
  13. 13.
    Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet. 2013;381:242–55.CrossRefPubMedGoogle Scholar
  14. 14.
    Marian AJ. Modifier genes for hypertrophic cardiomyopathy. Curr Opin Cardiol. 2002;17:242–52.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, Benaiche A, Isnard R, Dubourg O, Burban M, Gueffet JP, Millaire A, Desnos M, Schwartz K, Hainque B, Komajda M, EUROGENE Heart Failure Project. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 2003;107:2227–32.CrossRefPubMedGoogle Scholar
  16. 16.
    Olivotto I, Maron MS, Adabag AS, Casey SA, Vargiu D, Link MS, Udelson JE, Cecchi F, Maron BJ. Gender-related differences in the clinical presentation and outcome of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2005;46:480–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Dimitrow PP, Czarnecka D, Jaszcz KK, Dubiel JS. Sex differences in age at onset of symptoms in patients with hypertrophic cardiomyopathy. J Cardiovasc Risk. 1997;4:33–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Lin CL, Chiang CW, Shaw CK, Chu PH, Chang CJ, Ko YL. Gender differences in the presentation of adult obstructive hypertrophic cardiomyopathy with resting gradient: a study of 122 patients. Jpn Circ J. 1999;63:859–64.CrossRefPubMedGoogle Scholar
  19. 19.
    Kubo T, Kitaoka H, Okawa M, Hirota T, Hayato K, Yamasaki N, Matsumura Y, Yabe T, Doi YL. Gender-specific differences in the clinical features of hypertrophic cardiomyopathy in a community-based Japanese population: results from Kochi RYOMA study. J Cardiol. 2010;56:314–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Schulz-Menger J, Abdel-Aty H, Rudolph A, Elgeti T, Messroghli D, Utz W, Boye P, Bohl S, Busjahn A, Hamm B, Dietz R. Gender-specific differences in left ventricular remodelling and fibrosis in hypertrophic cardiomyopathy: insights from cardiovascular magnetic resonance. Eur J Heart Fail. 2008;10:850–4.CrossRefPubMedGoogle Scholar
  21. 21.
    Schafer E, Baron K, Widmer U, Deegan P, Neumann HP, Sunder-Plassmann G, Johansson JO, Whybra C, Ries M, Pastores GM, Mehta A, Beck M, Gal A. Thirty-four novel mutations of the GLA gene in 121 patients with Fabry disease. Hum Mutat. 2005;25:412.CrossRefPubMedGoogle Scholar
  22. 22.
    Wilcox WR, Oliveira JP, Hopkin RJ, Ortiz A, Banikazemi M, Feldt-Rasmussen U, Sims K, Waldek S, Pastores GM, Lee P, Eng CM, Marodi L, Stanford KE, Breunig F, Wanner C, Warnock DG, Lemay RM, Germain DP, Fabry Registry. Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab. 2008;93:112–28.CrossRefPubMedGoogle Scholar
  23. 23.
    Deegan PB, Baehner AF, Barba Romero MA, Hughes DA, Kampmann C, Beck M, European FOS Investigators. Natural history of Fabry disease in females in the Fabry Outcome Survey. J Med Genet. 2006;43:347–52.CrossRefPubMedGoogle Scholar
  24. 24.
    Linhart A, Palecek T, Bultas J, Ferguson JJ, Hrudova J, Karetova D, Zeman J, Ledvinova J, Poupetova H, Elleder M, Aschermann M. New insights in cardiac structural changes in patients with Fabry’s disease. Am Heart J. 2000;139:1101–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Niemann M, Herrmann S, Hu K, Breunig F, Strotmann J, Beer M, Machann W, Voelker W, Ertl G, Wanner C, Weidemann F. Differences in Fabry cardiomyopathy between female and male patients: consequences for diagnostic assessment. JACC Cardiovasc Imaging. 2011;4:592–601.CrossRefPubMedGoogle Scholar
  26. 26.
    Rapezzi C, Quarta CC, Riva L, Longhi S, Gallelli I, Lorenzini M, Ciliberti P, Biagini E, Salvi F, Branzi A. Transthyretin-related amyloidoses and the heart: a clinical overview. Nat Rev Cardiol. 2010;7:398–408.CrossRefPubMedGoogle Scholar
  27. 27.
    Rapezzi C, Riva L, Quarta CC, Perugini E, Salvi F, Longhi S, Ciliberti P, Pastorelli F, Biagini E, Leone O, Cooke RM, Bacchi-Reggiani L, Ferlini A, Cavo M, Merlini G, Perlini S, Pasquali S, Branzi A. Gender-related risk of myocardial involvement in systemic amyloidosis. Amyloid. 2008;15:40–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Hornsten R, Pennlert J, Wiklund U, Lindqvist P, Jensen SM, Suhr OB. Heart complications in familial transthyretin amyloidosis: impact of age and gender. Amyloid. 2010;17:63–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Cano A, Ovaert C, Vianey-Saban C, Chabrol B. Carnitine membrane transporter deficiency: a rare treatable cause of cardiomyopathy and anemia. Pediatr Cardiol. 2008;29:163–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Magoulas PL, El-Hattab AW. Systemic primary carnitine deficiency: an overview of clinical manifestations, diagnosis, and management. Orphanet J Rare Dis. 2012;7:68.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Vijay S, Patterson A, Olpin S, Henderson MJ, Clark S, Day C, Savill G, Walter JH. Carnitine transporter defect: diagnosis in asymptomatic adult women following analysis of acylcarnitines in their newborn infants. J Inherit Metab Dis. 2006;29:627–30.CrossRefPubMedGoogle Scholar
  32. 32.
    Rowland T, Roti M. Influence of sex on the ‘Athlete's Heart’ in trained cyclists. J Sci Med Sport. 2010;13:475–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Whyte GP, George K, Sharma S, Firoozi S, Stephens N, Senior R, McKenna WJ. The upper limit of physiological cardiac hypertrophy in elite male and female athletes: the British experience. Eur J Appl Physiol. 2004;92:592–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Pelliccia A, Maron MS, Maron BJ. Assessment of left ventricular hypertrophy in a trained athlete: differential diagnosis of physiologic athlete’s heart from pathologic hypertrophy. Prog Cardiovasc Dis. 2012;54:387–96.CrossRefPubMedGoogle Scholar
  35. 35.
    Heidbuchel H, La Gerche A. The right heart in athletes. Evidence for exercise-induced arrhythmogenic right ventricular cardiomyopathy. Herzschrittmacherther Elektrophysiol. 2012;23:82–6.PubMedGoogle Scholar
  36. 36.
    Goncalves I, Alves CH, Quintela T, Baltazar G, Socorro S, Saraiva MJ, Abreu R, Santos CR. Transthyretin is up-regulated by sex hormones in mice liver. Mol Cell Biochem. 2008;317:137–42.CrossRefPubMedGoogle Scholar
  37. 37.
    Burkett EL, Hershberger RE. Clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol. 2005;45:969–81.CrossRefPubMedGoogle Scholar
  38. 38.
    Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med. 1994;331:1564–75.CrossRefPubMedGoogle Scholar
  39. 39.
    Hoogerwaard EM, Bakker E, Ippel PF, Oosterwijk JC, Majoor-Krakauer DF, Leschot NJ, Van Essen AJ, Brunner HG, van der Wouw PA, Wilde AA, de Visser M. Signs and symptoms of Duchenne muscular dystrophy and Becker muscular dystrophy among carriers in The Netherlands: a cohort study. Lancet. 1999;353:2116–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Schade van Westrum SM, Hoogerwaard EM, Dekker L, Standaar TS, Bakker E, Ippel PF, Oosterwijk JC, Majoor-Krakauer DF, van Essen AJ, Leschot NJ, Wilde AA, de Haan RJ, de Visser M, van der Kooi AJ. Cardiac abnormalities in a follow-up study on carriers of Duchenne and Becker muscular dystrophy. Neurology. 2011;77:62–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Politano L, Nigro V, Nigro G, Petretta VR, Passamano L, Papparella S, Di Somma S, Comi LI. Development of cardiomyopathy in female carriers of Duchenne and Becker muscular dystrophies. JAMA. 1996;275:1335–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Viggiano E, Picillo E, Cirillo A, Politano L. Comparison of X-chromosome inactivation in Duchenne muscle/myocardium-manifesting carriers, non-manifesting carriers and related daughters. Clin Genet. 2013;84:265–70.CrossRefPubMedGoogle Scholar
  43. 43.
    Fairweather D, Cooper LT Jr, Blauwet LA. Sex and gender differences in myocarditis and dilated cardiomyopathy. Curr Probl Cardiol. 2013;38:7–46.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Roberts WC, McAllister HA, Ferrans VJ. Sarcoidosis of the heart A clinicopathologic study of 35 necropsy patients (group I) and review of 78 previously described necropsy patients (group II). Am J Med. 1977;63:86–108.CrossRefPubMedGoogle Scholar
  45. 45.
    Lewin RF, Mor R, Spitzer S, Arditti A, Hellman C, Agmon J. Echocardiographic evaluation of patients with systemic sarcoidosis. Am Heart J. 1985;110:116–22.CrossRefPubMedGoogle Scholar
  46. 46.
    Bernstein M, Konzelmann FW, Sidlick DM. Boeck’s sarcoid report of a case with visceral involvement. Arch Intern Med. 1929;44:721–34.CrossRefGoogle Scholar
  47. 47.
    Burt VL, Whelton P, Roccella EJ, Brown C, Cutler JA, Higgins M, et al. Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988-1991. Hypertension. 1995;25:305–13.CrossRefPubMedGoogle Scholar
  48. 48.
    Stamler J, Stamler R, Riedlinger WF, Algera G, Roberts RH. Hypertension screening of 1 million Americans Community Hypertension Evaluation Clinic (CHEC) program, 1973 through 1975. JAMA. 1976;235:2299–306.CrossRefPubMedGoogle Scholar
  49. 49.
    Bazett HC. The time relations of the blood-pressure changes after excision of the adrenal glands, with some observations on blood volume changes. J Physiol. 1920;53:320–39.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Mallat Z, Fornes P, Costagliola R, Esposito B, Belmin J, Lecomte D, et al. Age and gender effects on cardiomyocyte apoptosis in the normal human heart. J Gerontol A Biol Sci Med Sci. 2001;56:M719–23.CrossRefPubMedGoogle Scholar
  51. 51.
    Isensee J, Ruiz NP. Sexually dimorphic gene expression in mammalian somatic tissue. Gend Med. 2007;4(Suppl B):S75–95.CrossRefPubMedGoogle Scholar
  52. 52.
    Vitale C, Mendelsohn ME, Rosano GM. Gender differences in the cardiovascular effect of sex hormones. Nat Rev Cardiol. 2009;6:532–42.CrossRefGoogle Scholar
  53. 53.
    Regitz-Zagrosek V, Becher E, Mahmoodzadeh S, Schubert C. Sex steroid hormones. In: Bader M, editor. Cardiovascular hormone systems: from molecular mechanisms to novel therapeutics. Weinheim, Germany: Wiley-Blackwell; 2008. p. 39–64.CrossRefGoogle Scholar
  54. 54.
    Deslypere JP, Vermeulen A. Influence of age on steroid concentrations in skin and striated muscle in women and in cardiac muscle and lung tissue in men. J Clin Endocrinol Metab. 1985;61:648–53.CrossRefPubMedGoogle Scholar
  55. 55.
    Melchert RB, Kennedy RH, Acosta D Jr. Cardiovascular effects of steroidal agents. In: Acosta D, editor. Cardiovascular toxicology. London: Taylor & Francis; 2001. p. 425–75.Google Scholar
  56. 56.
    Scheuer J, Malhotra A, Schaible TF, Capasso J. Effects of gonadectomy and hormonal replacement on rat hearts. Circ Res. 1987;61:12–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Fairweather D, Petri MA, Coronado MJ, Cooper LT Jr. Autoimmune heart disease: role of sex hormones and autoantibodies in disease pathogenesis. Expert Rev Clin Immunol. 2012;8:269–84.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sliwa K, Forster O, Libhaber E, Fett JD, Sundstron JB, Hilfiker-Kleiner D, et al. Peripartum cardiomyopathy: inflammatory markers as predictors of outcome in 100 prospectively studied patients. Eur Heart J. 2006;27:441–6.CrossRefPubMedGoogle Scholar
  59. 59.
    Sheppard R, Bedi M, Kubota T, Semigran MJ, Dec W, Holubkov R, et al. Myocardial expression of Fas and recovery of left ventricular function in patients with recent-onset cardiomyopathy. J Am Coll Cardiol. 2005;46:1036–42.CrossRefPubMedGoogle Scholar
  60. 60.
    Sliwa K, Skudicky D, Bergemann A, Candy G, Puren A, Sareli P. Peripartum cardiomyopathy: analysis of clinical outcome, left ventricular function, plasma levels of cytokines and Fas/APO-1. J Am Coll Cardiol. 2000;35:701–5.CrossRefPubMedGoogle Scholar
  61. 61.
    Bursi F, Weston SA, Redfield MM, Jacobsen SJ, Pakhomov S, Nkomo VT, et al. Systolic and diastolic heart failure in the community. JAMA. 2006;296:2209–16.CrossRefPubMedGoogle Scholar
  62. 62.
    Barsheshet A, Brenyo A, Goldenberg I, Moss AJ. Sex-related differences in patients’ responses to heart failure therapy. Nat Rev Cardiol. 2012;9(4):234–42.CrossRefPubMedGoogle Scholar
  63. 63.
    Lenzen MJ, Rosengren A, Scholte OP, Reimer WJ, Follath F, Boersma E, Simoons ML, et al. Management of patients with heart failure in clinical practice: differences between men and women. Heart. 2008;94:e10.CrossRefPubMedGoogle Scholar
  64. 64.
    Robinson T, Smith A, Channer KS. Reversible heart failure: the role of inflammatory activation. Postgrad Med J. 2011;87:110–5.CrossRefPubMedGoogle Scholar
  65. 65.
    Lahita RG. Sex hormones and immune function. In: Legato MJ, editor. Principles of gender-specific medicine. 2nd ed. Burlington, MA: Elsevier; 2010. p. 615–26.CrossRefGoogle Scholar
  66. 66.
    Gilliver SC. Sex steroids as inflammatory regulators. J Steroid Biochem Mol Biol. 2010;120:105–15.CrossRefPubMedGoogle Scholar
  67. 67.
    Villablanca AC, Jayachandran M, Banka C. Atherosclerosis and sex hormones: current concepts. Clin Sci. 2010;119:493–513.CrossRefPubMedGoogle Scholar
  68. 68.
    McCrohon JA, Death AK, Nakhla S, Jessup W, Handelsman DJ, Stanley KK, et al. Androgen receptor expression is greater in macrophages from male than from female donors. A sex difference with implications for atherogenesis. Circulation. 2000;101:224–6.CrossRefGoogle Scholar
  69. 69.
    Hammes SR, Levin ER. Minireview: recent advances in extranuclear steroid receptor actions. Endocrinology. 2011;152:4489–95.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Hodgin JB, Krege JH, Reddick RL, Korach KS, Smithies O, Maeda N. Estrogen receptor alpha is a major mediator of 17beta-estradiol’s atheroprotective effects on lesion size in Apoe−/− mice. J Clin Invest. 2001;107:333–40.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Cook IF. Sexual dimorphism of humoral immunity with vaccines. Vaccine. 2008;26:3551–5.CrossRefGoogle Scholar
  72. 72.
    Fairweather D, Frisancho-Kiss S, Rose NR. Sex differences in autoimmune disease from a pathologic perspective. Am J Pathol. 2008;173:600–9.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Papenfuss TL, Powell ND, McClain MA, Bedarf A, Singh A, Gienapp IE, et al. Estriol generates tolergenic dendritic cells in vivo that protect against autoimmunity. J Immunol. 2011;186:3346–55.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Rubtsov A, Rubtsova K, Kappler JW, Marrack P. Genetic and hormonal factors in female-biased autoimmunity. Autoimmun Rev. 2010;9:494–8.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Straub RH. The complex role of estrogens in inflammation. Endocr Rev. 2007;28:521–74.CrossRefGoogle Scholar
  76. 76.
    Deshpande R, Khalili H, Pergolizzi RG, Michael SD, Change MD. Estradiol down-regulates LPS-induced cytokine production and NFκB activation in murine macrophages. Am J Reprod Immunol. 1997;38:46–54.CrossRefGoogle Scholar
  77. 77.
    Evans MJ, Eckert A, Lai K, Adelman SJ, Harnish DC. Reciprocal antagonism between estrogen receptor and NF-kappaB activity in vivo. Circ Res. 2001;89:823–30.CrossRefGoogle Scholar
  78. 78.
    Temple SE, Pham K, Glendenning P, Phillips M, Waterer GW. Endotoxin induced TNF and IL-10 mRNA production is higher in male than female donors: correlation with elevated expression of TLR4. Cell Immunol. 2008;251:69–71.CrossRefPubMedGoogle Scholar
  79. 79.
    Giron-Gonzalez JA, Moral FJ, Elvira J, Garcia-Gil D, Guerrero F, Gavilan I, et al. Consistent production of a higher TH1:TH2 cytokine ratio by stimulated T cells in men compared to women. Eur J Endocrinol. 2000;143:31–6.CrossRefPubMedGoogle Scholar
  80. 80.
    Saha Roy S, Vadlamudi RK. Role of estrogen receptor signaling in breast cancer metastasis. Int J Breast Cancer. 2012;2012:654698.CrossRefPubMedGoogle Scholar
  81. 81.
    Miller VM. In pursuit of scientific excellence—sex matters. Am J Physiol Heart Circ Physiol. 2012;302:H1771–2.CrossRefPubMedGoogle Scholar
  82. 82.
    Cutolo M, Brizzolara R, Atzeni F, Capellino S, Straub RH, Puttini PCS. The immunomodulatory effects of estrogens: clinical relevance in immune-mediated rheumatic diseases. Ann N Y Acad Sci. 2010;1193:36–42.CrossRefPubMedGoogle Scholar
  83. 83.
    Blauwet LA, Hayes SN, McManus D, Redberg RF, Walsh MN. Low rate of sex-specific reporting in cardiovascular trials. Mayo Clin Proc. 2007;82:166–70.CrossRefPubMedGoogle Scholar
  84. 84.
    The Institute of Medicine of the National Academies. Sex-specific reporting of scientific research: a workshop summary. Washington, DC: The National Academies Press; 2012. p. 1–59.Google Scholar
  85. 85.
    Frisancho-Kiss S, Nyland JF, Davis SE, Frisancho JA, Barrett MA, Rose NR, et al. Sex differences in coxsackievirus B3-induced myocarditis: IL-12Rβ1 signaling and IFN-γ increase inflammation in males independent from STAT4. Brain Res. 2006;1126:139–47.CrossRefPubMedGoogle Scholar
  86. 86.
    Coronado MJ, Brandt JE, Kim E, Bucek A, Bedja D, Abston ED, et al. Testosterone and interleukin-1b increase cardiac remodeling during acute coxsackievirus B3 myocarditis via serpin A 3n. Am J Physiol Heart Circ Physiol. 2012;302:H1726–36.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Huber SA. Coxsackievirus B3-induced myocarditis: infection of females during the estrus phase of the ovarian cycle leads to activation of T regulatory cells. Virology. 2008;378:292–8.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Huber SA, Pfaeffle B. Differential Th1 and Th2 cell responses in male and female BALB/c mice infected with coxsackievirus group B type 3. J Virol. 1994;68:5126–32.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Huber SA. Increased susceptibility of male BALB/c mice to coxsackievirus B3-induced myocarditis: role of CD1d. Med Microbiol Immunol. 2005;194:121–7.CrossRefPubMedGoogle Scholar
  90. 90.
    Frisancho-Kiss S, Coronado MJ, Frisancho JA, Lau VM, Rose NR, Klein SL, et al. Gonadectomy of male BALB/c mice increases Tim-3+ alternatively activated M2 macrophages, Tim-3+ T cells, Th2 cells and Treg in the heart during acute coxsackievirus-induced myocarditis. Brain Behav Immun. 2009;23:649–57.CrossRefGoogle Scholar
  91. 91.
    Huber SA, Kupperman J, Newell MK. Estradiol prevents and testosterone promotes Fas-dependent apoptosis in CD4+ Th2 cells by altering Bcl2 expression. Lupus. 1999;8:384–7.CrossRefPubMedGoogle Scholar
  92. 92.
    Li K, Xu W, Guo Q, Jiang Z, Wang P, Yue Y, et al. Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ Res. 2009;105:353–64.CrossRefPubMedGoogle Scholar
  93. 93.
    Fairweather D, Frisancho-Kiss S, Yusung SA, Barrett MA, Davis SE, Gatewood SJL, et al. IFN-γ protects against chronic viral myocarditis by reducing mast cell degranulation, fibrosis, and the profibrotic cytokines TGF-β1, IL-1β, and IL-4 in the heart. Am J Pathol. 2004;165:1883–94.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Fairweather D, Yusung S, Frisancho S, Barrett M, Gatewood S, Steele R, et al. IL-12Rβ1 and TLR4 increase IL-1β and IL-18-associated myocarditis and coxsackievirus replication. J Immunol. 2003;170:4731–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Cardiovascular MedicineUniversity of Arkansas for Medical SciencesLittle RockUSA
  2. 2.Department of Cardiovascular Medicine and HypertensionRutgers Robert Wood Johnson Medical SchoolNew BrunswickUSA

Personalised recommendations